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A fully kinetic, reduced-description particle-in-cell (RPIC) model is presented in
which deviations from quasineutrality, electron and ion kinetic effects, and nonlinear
interactions between low-frequency and high-frequency parametric instabilities are
modeled correctly. The model is based on a reduced description where the electro-
magnetic field is represented by three separate temporal envelopes in order to model
parametric instabilities with low-frequency and high-frequency daughter waves. Be-
cause temporal envelope approximations are invoked, the simulation can be per-
formed on the electron time scale instead of the time scale of the light waves. The
electrons and ions are represented by discrete finite-size particles, permitting electron
and ion kinetic effects to be modeled properly. The Poisson equation is utilized to
ensure that space-charge effects are included. The RPIC model is fully three dimen-
sional and has been implemented in two dimensions on the Accelerated Strategic
Computing Initiative (ASCI) parallel computer at Los Alamos National Laboratory,
and the resulting simulation code has been named ASPEN. We believe this code is the
first particle-in-cell code capable of simulating the interaction between low-frequency
and high-frequency parametric instabilites in multiple dimensions. Test simulations
of stimulated Raman scattering, stimulated Brillouin scattering, and Langmuir decay
instability are presented.

Key Words:massively parallel; fully kinetic; reduced-description; two dimen-
sional; particle-in-cell; parametric instabilities; stimulated Brillouin scattering; stim-
ulated Raman scattering; Langmuir decay instability.

1. INTRODUCTION

In inertial confinement fusion (ICF) applications, an external high-frequency monochro-
matic laser is employed to irradiate the plasma. The external monochromatic electromag-
netic wave, due to its interaction with the plasma, can undergo parametric instabilities, which
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decay into various combinations of high-frequency or low-frequency daughter waves [1].
Recent experiments [2, 3] and Zakharov simulations [4, 5] indicate that in ICF plasmas of
interest, nonlinear processes such as the Langmuir decay instability (LDI) and Langmuir
collapse can affect the growth and saturation of the stimulated Raman scattering (SRS)
instability. Due to a multitude of spatial and temporal scales that exist in such plasmas and
the fact that the external driving electromagnetic field is of high frequency, general-purpose
explicit, implicit, and hybrid particle-in-cell (PIC) algorithms [6, 30] are either incapable
of simulating the actual physics, or computationally inefficient. In recent works [31–33],
a special-purpose hybrid PIC model was presented in which the electrons are modeled as
an adiabatic fluid with an arbitrary ratio of specific heatsγ , and the electromagnetic field
model is based on a temporal envelope approximation. This hybrid PIC model was imple-
mented in three dimensions on a CRAY-T3D with 512 processors and was shown to model
ion Landau damping, finite-Debye-length effects, aperiodically driven stimulated Brillouin
scattering (SBS), and the interaction between SBS and the filamentation instability (FI)
correctly [31–33]. However, this hybrid model does not include electron kinetic effects and
is therefore inadequate for situations in which high-frequency parametric instabilities, such
as stimulated Raman scattering, play a significant role.

In this paper, we present a fully kinetic reduced-description particle-in-cell (RPIC) model
in which low-frequency and high-frequency parametric instabilities and their interaction are
modeled accurately and efficiently. It can be shown that in the limit where high-frequency
instabilities are not important, RPIC reduces to the aforementioned hybrid model [31–33].

RPIC treats electrons and ions as discrete finite-size particles, allowing linear and nonlin-
ear kinetic effects to be modeled correctly for both electrons and ions. The Poisson equation
is solved to ensure that space-charge effects are included. The electromagnetic field is mod-
eled using a temporal envelope representation that results in three coupled Schr¨odinger-like
equations for the envelopes of: (1) the incident and SBS-scattered electromagnetic field,
(2) the frequency-downshifted SRS-scattered electromagnetic field, and (3) the frequency-
upshifted SRS-scattered electromagnetic field. A novel feature of RPIC is the method of
extracting the temporal electron density envelopes from the instantaneous electron density
which, in turn, is obtained by interpolating from the particles onto the computational mesh.
It is important to note here that unlike standard explicit PIC models in which the electrons
and ions are advanced in phase-space using the same electric field, RPIC legislates that
the ion response has no high-frequency components. This is justified because the ions are
too massive to have any appreciable high-frequency response. The elimination of high-
frequency components from the ion response is a unique feature of RPIC and is a crucial
element in allowing secondary parametric decay processes to be modeled accurately. With-
out the elimination of high-frequency components from the ion response, high-frequency
scattering of low-frequency ion acoustic waves would tend to obscure these secondary de-
cay processes. It has been shown in a recent work of Sanbonmatsuet al. [34] that there is
excellent quantitative agreement between RPIC and a quasilinear Zakharov (fluid) model
in the weakly driven regime where the Zakharov model is generally anticipated to be valid.
This quantitative agreement includes Langmuir wave spectra, acoustic wave spectra, elec-
tron distribution function, and time-history of the Langmuir wave energy. Such quantitative
agreement has been an elusive goal of plasma simulations of nonlinear parametric processes
occuring in ICF plasmas until now.

The rest of this paper is divided into six sections. In Section 2, we describe the physi-
cal model appropriate for simulating parametric instabilities with both high-frequency and
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low-frequency daughter waves. The conservation laws which RPIC obeys are shown and
discussed in Section 3. In Section 4, the temporal mean-square noise spectra are character-
ized both analytically and numerically. This is of importance because in the aforementioned
work of Sanbonmatsuet al. [34], where quantitative comparisons between ASPEN and a
quasilinear Zakharov model were made, one must be able to characterize the noise spectra
in ASPEN so that these spectra can be imposed as noise sources in the quasilinear Zakharov
simulations. In Section 5, the numerical algorithm for advancing the governing equations
in time and its numerical properties are discussed. In Section 6, test simulations of un-
driven Landau-damped Langmuir waves and of SRS and the Langmuir decay instability
(LDI) are presented. Section 7 is a summary of our results and conclusions based on these
results.

2. RPIC MODEL

In the presence of an electromagnetic pump wave of frequencyω0, the self-consistent
vector potential, scalar potential, and density response of a plasma with uniform background
plasma frequencyωpe0 can be written as

A(x, t) = 1

2

(
am(x, t)e−iωmt + a∗m(x, t)e

iωmt
)
,

φ(x, t) = φS(x, t)+ 1

2

(
φF (x, t)e−iωpe0t + φ∗F (x, t)eiωpe0t

)
, (1)

ne(x, t) = neS(x, t)+ 1

2

(
neF(x, t)e−iωpe0t + n∗eF(x, t)e

iωpe0t
)
,

where the integer indexm=−1, 0, 1, ωm=ω0+mωpe0, and the convention of summing
over repeated indices is assumed. The temporal envelopesam, φF , andneF are complex-
valued and are assumed to vary on a time scale much longer than 2π/ωpe0. The envelope
a0(x, t) represents the incident electromagnetic field and the SBS-scattered electromag-
netic field. The envelopesa−1(x, t) and a1(x, t) represent the scattered electromagnetic
field due to frequency-downshifted and frequency-upshifted SRS, respectively.φS andφF

represent electrostatic potentials associated with low-frequency and high-frequency waves,
respectively, including ion acoustic waves (IAWs) and Langmuir waves (LWs).neS(x, t)
includes the background electron density and any low-frequency electron density pertur-
bation.neF(x, t) is the electron density associated with high-frequency waves. It is noted
here that in writing Eqs. (1), one has tacitly neglected harmonic generation of both the light
waves and LWs. In fact, for situations of interest to the ICF effort, the laser intensity is not
sufficiently high to make harmonic generation important. In particular, in writing Eqs. (1),
one assumes that the electron density response can be expressed as a linear combination of
IAWs and LWs. In order for the model to be numerically tractable, one must, therefore, be
able to extract the temporal envelopesneSandneF from the instantaneous electron densityne

which, in turn, is computed by interpolating particle data onto the computational mesh. The
task of calculatingneSandneF from ne is a novel feature of this work and will be discussed
subsequently. It is worth noting that by applying the temporal envelope approximation, one
has eliminated the laser timescale from the model, and the time step of the simulation is
limited by the Courant condition of the thermal electrons, whereas with standard explicit
PIC models, the time step of the simulation is limited by the Courant condition of the light
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wave. Thus, the CPU time required by RPIC is less than that of standard explicit PIC models
by the ratio of the electron thermal speed to the speed of light. Typically, this saving is about
one order of magnitude.

Unlike standard PIC models in which the electrons and ions are advanced in phase-space
using the same electric field, RPIC advances the particles as follows:

me
due

dt
= e∇φ − e2

4mec2
∇(am · a∗l e−i (m−l )ωpe0t

)
,

dxe

dt
= ue,

(2)

mi
dui

dt
= −eZi∇φS− e2Z2

i

4mi c2
∇(am · am),

dxi

dt
= ui .

In writing Eqs. (2), one has assumed that the electrons are nonrelativistic. In Eqs. (2), the
electron response has been averaged over the laser time scale, and the ion response has
likewise been averaged over the electron time scale [31–33]. It can be shown, within the
framework of kinetic theory, that by eliminating the high-frequency components of the
electric field under whose influence the ions are advanced, one has: (a) eliminated ion–
electron collisions completely and (b) reduced the ion velocity diffusion substantially. As
a result, secondary decay processes such as LDI can be modeled accurately in an efficient
manner. In fact, it has been shown [34] that our PIC model can capture at least three steps
of secondary decays beyond the primary decay. The elimination of ion–electron collision is
justified because the plasmas under consideration are sufficiently hot that they are essentially
collisionless.

The electron and ion number densities are computed by interpolating particle data,

−ene(x, t) =
∑
p∈e

qpS(x− xp(t)),

(3)
eZi ni (x, t) =

∑
p∈i

qpS(x− xp(t)),

whereS(x) is the particle interpolation function and is taken to be the biquadratic B-spline
of compact support.

The scalar potentials are obtained from Poisson’s equations,

∇2φ = 4πe

(
ne−

∑
i

Zi ni

)
,

(4)

∇2φS = 4πe

(
neS−

∑
i

Zi ni

)
,

where one has made use of the fact that the ion density in this model does not have a
high-frequency component.

The self-consistent vector potentialA described in Eqs. (1) can be shown to excite high-
frequency electron and ion motions with velocitiesuT e= eA/mec anduT i =−Zi eA/mi c
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[31], which in turn give rise to currents of the formJe= e2neA/mecandJi = Z2
i e2ni A/mi c.

The net transverse current is obtained by summing over the individual currents and by
projecting out any longitudinal contribution as follows:

JT ≈ − 1

4πc

[
4πe2

(
ne

me
+
∑

i

Z2
i ni

mi

)
A −∇χ

]
,

∇2χ = 4πe2A · ∇
(

ne

me
+
∑

i

Z2
i ni

mi

)
.

Here,c is the speed of light. The indexi denotes the ion species.Zi , mi , andni are the
ionization state, ionic mass, and number density of thei th ion species. Likewise,me and
ne are the electronic mass and electron number density, respectively. It is noted thatχ is
defined such that∇ · JT =∇ ·A= 0.

Substituting the above expression forJT into Ampere’s law,∇ ×B= (4π/c)JT +
(1/c)∂ET/∂t , neglecting the second-order temporal derivatives of the field envelopesam

and harmonic generation, and separating frequency components, one obtains three coupled
Schrödinger-like equations,

i

(
2ω0

c2

)
∂a0

∂t
+∇2a0+ 1

c2
∇χ0+ 4πe2

c2

(
n0− neS

me
−
∑

i

Z2
i ni

mi

)
a0

= 4πe2

2mec2
(neFa−1+ n∗eFa1)− 1

2c2
∇ξ0,

i

(
2ω−1

c2

)
∂a−1

∂t
+∇2a−1+ 1

c2
∇χ−1+ 4πe2

c2

(
n−1− neS

me
−
∑

i

Z2
i ni

mi

)
a−1

(5)

= 4πe2

2mec2
n∗eFa0− 1

2c2
∇ξ−1,

i

(
2ω1

c2

)
∂a1

∂t
+∇2a1+ 1

c2
∇χ1+ 4πe2

c2

(
n1− neS

me
−
∑

i

Z2
i ni

mi

)
a1

= 4πe2

2mec2
neFa0− 1

2c2
∇ξ1,

with 4πe2nm/me≡ω2
m,m=−1, 0, 1. The scalarsχm andξm are defined such that∇ ·am= 0

and are as follows:

∇2χm ≡ 4πe2am · ∇
(

neS

me
+
∑

i

Z2
i ni

mi

)
,

∇2ξ0 ≡ 4πe2

me
(a−1 · ∇neF + a1 · ∇n∗eF),

(6)

∇2ξ−1 ≡ 4πe2

me
a0 · ∇n∗eF,

∇2ξ1 ≡ 4πe2

me
a0 · ∇neF.
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It is noted that in the 2D geometry considered in Section 6B (and in 1D) the scalarsχm

andξm can be taken to be zero. The temporal envelopesφF andneF are computed as follows:

neF ≈ eiωpe0t

[
− 1

iωpe0

∂ne

∂t
+ (ne− neS)

]
,

(7)

φF ≈ eiωpe0t

[
− 1

iωpe0

∂φ

∂t
+ (φ − φS)

]
.

Equations (7) are the result of simple manipulation of Eqs. (1) where higher-order har-
monics have been neglected, and the assumption of the slow temporal variation ofφF and
neF on the time scale of 2π/ωpe0 is explicitly invoked. Closure of the model is obtained
with the following equations,

eφS− e2

4mec2
am · a∗m − f (γ, neS)

− 1

4meω
2
pe0

∣∣∣∣∇[eφF − e2

2mec2
(a0 · a∗−1+ a∗0 · a1)

]∣∣∣∣2 = α(t), (8)

f (γ, neS) =


Te0 ln
(

neS
ne0

)
if γ = 1

Te0
(

γ

γ − 1

)(
neS
ne0

)γ−1
if γ 6= 1

, (9)

whereα is a constant of spatial integration and is therefore only a function oft . In our
model,α is chosen such that global charge neutrality is ensured; i.e.,∫

∇φS · dσ = 0. (10)

Here,ne0 andTe0 are the initial electron density and temperature anddσ a surface area
element. A detailed derivation of the closure equations, Eqs. (8), (9), is tedious and has
been deferred to Appendix A in order to improve the readibility of the paper. Equations (7)–
(9), which allow the decompositions of the electron density and electrostatic potential into
their respective low-frequency and high-frequency components, are critical steps in the
RPIC model. Without Eqs. (7)–(9), the concept of temporal envelope representation of the
electromagnetic waves cannot be applied toward PIC modeling of parametric instabilities.

In summary, Eqs. (2)–(10) constitute our physical model. Equations (3)–(10) are solved
self-consistently to obtain the vector and scalar potentials, and Eqs. (2) are used to advance
the electrons and ions in phase-space in response to the presence of these forces.

3. CONSERVATION LAWS

The model presented in Section 2 obeys certain conservation laws which are not immedi-
ately obvious. Here, three conservation laws can be derived from the model: (1) conservation
of the number of photons, (2) conservation of energy, and (3) conservation of momentum.
Conservation of charge is trivially satisfied and will not be derived. It is noted here that
it is important that the model conserves momentum because momentum imparted on the
particles by the light waves, over a sufficiently long time, can affect plasma hydrodynamic
motion and the evolution of parametric instabilities [35].
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The conservation laws can be derived from our model, Eqs. (2)–(10), using the standard
approach in classical electrodynamics, and the results are as follows,

d

dt

(
Em

ωm

)
+
∫

Fm

ωm
· dσ = 0, (11)

d

dt
(EKL + EKT+ Eφ + E1+ E0+ E−1)

+
∫
(FKL + FKT+ Fφ + F1+ F0+ F−1) · dσ = 0, (12)

d

dt
(PK + P)+

∫
dσ · (ΓK + Γ) = 0, (13)

where the various momenta, energies, and fluxes are defined as follows:

e0 ≡ iω0a0/c,

e1 ≡ iω1a1/c,

e−1 ≡ iω−1a−1/c,

bm ≡ ∇ ×am, m= −1, 0, 1,

Em ≡
∫ |em|2

8π
d3x, m= −1, 0, 1,

F0 ≡ c

16π

(
[∇a∗0] · e0+ [∇a0] · e∗0 +

1

c2

[
χ∗0 +

1

2
ξ ∗0

]
e0+ 1

c2

[
χ0+ 1

2
ξ0

]
e∗0

)
,

F1 ≡ c

16π

(
[∇a∗1] · e1+ [∇a1] · e∗1 +

1

c2

[
χ∗1 +

1

2
ξ ∗1

]
e1+ 1

c2

[
χ1+ 1

2
ξ1

]
e∗1

)
,

F−1 ≡ c

16π

(
[∇a∗−1] · e−1+ [∇a−1] · e∗−1+

1

c2

[
χ∗−1+

1

2
ξ ∗−1

]
e−1

+ 1

c2

[
χ−1+ 1

2
ξ−1

]
e∗−1

)
,

Eφ ≡ 1

8π

∫ (
|∇φS|2+ 1

2
|∇φF |2

)
d3x,

Fφ ≡ −〈φneUe〉 +
∑

i

eφSZi ni Ui − 1

4π

(
φS∇ ∂φS

∂t
+ iωpe0

4
[φF∇φ∗F − φ∗F∇φF ]

)
,

EKL ≡
〈∑

p∈e

1

2
mp|up|2+

∑
i

∑
p∈i

1

2
mp|up|2

〉
,

FKL ≡
〈∑

p∈e

1

2
mp|up|2upδ(x− xp)+

∑
i

∑
p∈i

1

2
mp|up|2upδ(x− xp)

〉
,

EKT ≡
∫

1

16πc2

(
4πe2neS

me
+
∑

i

4πe2Z2
i ni

mi

)
am · a∗m d3x,
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FKT ≡ 1

16πc2

〈
4πe2ne

me
Ueam · a∗l e−i (m−l )ωpe0t

〉
+ am · a∗m

16πc2

∑
i

4πe2Z2
i ni

mi
Ui ,

PK ≡
〈∑

p∈e

mpup +
∑

i

∑
p∈i

mpup

〉
,

ΓK ≡
〈∑

p∈e

mpupupδ(x− xp)+
∑

i

∑
p∈i

mpupupδ(x− xp)

〉
,

P ≡
∫

1

16πc
(em × b∗m + e∗m × bm) d3x,

Γ ≡ 1

16π

(
{bm, b∗m} + {em, e∗m} − [∇ ×bm]a∗m − [∇ ×b∗m]am

+ 1

c2

[
am · ∇

(
χ∗m +

1

2
ξ ∗m

)
+ a∗m · ∇

(
χm + 1

2
ξm

)]
I

− 1

c2

[
am∇

(
χ∗m +

1

2
ξ ∗m

)
+ a∗m∇

(
χm + 1

2
ξm

)])
+ 1

8π
{∇φS,∇φS} + 1

16π
{∇φF ,∇φF }.

The densitiesne andni are given by Eqs. (3),ne,i Ue,i ≡
∑

p∈e,i upδ(x− xp), 〈 · 〉 denotes
temporal averaging over the electron plasma timescale,{a, b}≡ (a ·b)I − ab− ba, andI is
the unit dyad.dσ is a surface area element. Equations (11), (12), and (13) are conservation
laws for the number of photons (if both sides of (11) are divided byh̄), total energy, and
total momentum, respectively. It is noted that in writing Eqs. (11)–(13), one has assumed
|∂neS/∂t |¿ |∂n/∂t |, |∂neF/∂t |¿ωpe0|neF|, and|∂am/∂t |¿ωpe0|am|. These assumptions
are, of course, consistent with the validity of the envelope representation on which RPIC is
based.

4. NUMERICAL NOISE

A detailed analysis of the density and electrostatic potential fluctuations for RPIC can be
found in Appendix B. In particular, temporal mean-square noise spectra for the quantitiesni ,
ne, neS, neF,φeS, andφeF are derived analytically by solving the linearized Vlasov equations
(see Eqs. (B.2) and (B.3)), taking into account the facts that the computational mesh is dis-
crete and that the particles have a finite spatial extent. These derived temporal mean-square
noise spectra are then compared to simulation results. The results are important because
in the aforementioned work of Sanbonmatsuet al. [34] where quantitative comparisons of
ASPEN simulations with quasilinear Zakharov simulations were made, one must be able
to characterize PIC noise spectra so that these spectra can be imposed as noise sources
in the Zakharov simulations. Furthermore, because the linear growth phase of parametric
instabilities is sensitive to the noise spectrum, it is imperative that the noise spectrum be
known.

Figure 1 is a comparison between Eqs. (B.2) and (B.3) and 1D numerical simulations in
which the external electromagnetic field is absent and indicate excellent agreement between
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FIG. 1. Temporal mean-square high-frequency electron density spectrum withLx/λDe= 4260,δx/λDe=
0.13,Ti /Te= 0.1, mi /me= 1836. Both electrons and ions are represented by four finite-size particles per compu-
tational cell.

theory and simulations. The spectra obtained from the simulation are averaged over a
period of 2500 plasma period. Two-dimensional simulations (not shown) are also in good
agreement with Eqs. (B.2) and (B.3).

5. NUMERICAL ALGORITHM

A temporal discretization scheme and its accompanying nonlinear numerical analysis are
presented in which the numerical solutions are shown to be stable, provided thatωpeδt < 1
and that the Courant condition for the electrons is satisfied. The iterative procedure for
solving the time-discrete equations is discussed. Two-dimensional spatial discretization of
the equations and parallelization-related issues, such as domain decomposition, will also
be discussed.

Each particle carries a chargeqp, positionxp, and velocity up. Associated with each
particle is an interpolation functionS(x− xp) that determines how the particle charges are
interpolated onto the computational mesh, as indicated in Eqs. (3). In our two-dimen-
sional Cartesian implementation of Eqs. (2)–(10),S(x) is chosen to be a biquadratic
B-spline.

A. Temporal Discretization

Using the leapfrog algorithm in which the pair of variablesxp and up are advanced
alternately in time, the particle equations of motion, Eqs. (2), are approximated as
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follows:

u(n+1/2)
pe − u(n−1/2)

pe

δt
= − qp

mp
∇
(
φ(n) + qp

4mpc2
a(n)m · a∗(n)l e−i (m−l )ωpe0t (n)

)
,

x(n+1)
pe − x(n)pe

δt
= u(n+1/2)

pe ,

(14)
u(n+1/2)

pi − u(n−1/2)
pi

δt
= − qp

mp
∇
(
φ
(n)
S +

qp

4mpc2
a(n)m · a∗(n)m

)
,

x(n+1)
pi − x(n)pi

δt
= u(n+1/2)

pi .

The superscripts denote the time level at which the physical variables are evaluated, and
t (n) = nδt .

The electron and ion number densities are obtained by evaluating Eqs. (3) at discrete
mesh points:

−en(n)e (x) =
∑
p∈e

qpS
(
x− x(n)p

)
,

(15)
eZi n

(n)
i (x) =

∑
p∈i

qpS
(
x− x(n)p

)
.

The scalar potentialsφ(n) andφ(n)S are obtained by evaluating Eqs. (4) at discrete time
levels:

∇2φ(n) = 4πe

(
n(n)e −

∑
i

Zi n
(n)
i

)
,

(16)
1

2
∇2
(
φ
(n)
S + φ(n−1)

S

) = 4πe

(
n(n−1/2)

eS − 1

2

∑
i

Zi
[
n(n)i + n(n−1)

i

])
.

The Schr¨odinger equations, Eqs. (5), are discretized using the Crank–Nicholson method
[31–33],

i

(
2ω0

c2

)
a(n)0 − a(n−1)

0

δt
+∇2a(n−1/2)

0 + 1

2c2
∇ξ (n−1/2)

0 + 4πe2

mec2

(
n0− n(n−1/2)

eS

)
a(n−1/2)

0

+ 1

c2
∇χ(n−1/2)

0 = 2πe2

mec2
n(n−1/2)

eF a(n−1/2)
−1 + 2πe2

mec2
n∗(n−1/2)

eF a(n−1/2)
1 ,

i

(
2ω−1

c2

)
a(n)−1− a(n−1)

−1

δt
+∇2a(n−1/2)

−1 + 1

2c2
∇ξ (n−1/2)
−1 + 4πe2

mec2

(
n−1− n(n−1/2)

eS

)
a(n−1/2)
−1

(17)

+ 1

c2
∇χ(n−1/2)
−1 = 2πe2

mec2
n∗(n−1/2)

eF a(n−1/2)
0 ,

i

(
2ω1

c2

)
a(n)1 − a(n−1)

1

δt
+∇2â1+ 1

2c2
∇ξ (n−1/2)

1 + 4πe2

c2

(
n1− n(n−1/2)

eS

)
a(n−1/2)

1

+ 1

c2
∇χ(n−1/2)

1 = 2πe2

mec2
n(n−1/2)

eF a(n−1/2)
0 ,
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wherea(n−1/2)
m ≡ (a(n)m + a(n−1)

m )/2 andn(n−1/2)
eS ≡ (n(n)eS+ n(n−1)

eS )/2. It is noted that with very
little loss of accuracy, terms of orderme/mi have been neglected. ˆχm andξ̂m are defined as
follows:

∇2χ(n−1/2)
m ≡ 4πe2

me
a(n−1/2)

m · ∇n(n−1/2)
eS ,

∇2ξ
(n−1/2)
0 ≡ 4πe2

me

(
a(n−1/2)
−1 · ∇n(n−1/2)

eF + a(n−1/2)
1 · ∇n∗(n−1/2)

eF

)
,

(18)

∇2ξ
(n−1/2)
−1 ≡ 4πe2

me
a(n−1/2)

0 · ∇n∗(n−1/2)
eF ,

∇2ξ
(n−1/2)
1 ≡ 4πe2

me
a(n−1/2)

0 · ∇n(n−1/2)
eF .

Closure is obtained by evaluating Eqs. (7)–(10) att (n−1/2):

φ
(n−1/2)
F = eiωpe0t (n−1/2)

(
−φ

(n) − φ(n−1)

iωpe0δt
+ φ

(n) + φ(n−1)

2
− φ

(n)
S + φ(n−1)

S

2

)
,

(19)

n(n−1/2)
eF = eiωpe0t (n−1/2)

(
−n(n)e − n(n−1)

e

iωpe0δt
+ n(n)e + n(n−1)

e

2
− n(n−1/2)

eS

)
,

eφ(n)S + eφ(n−1)
S

2
− f

(
γ, n(n−1/2)

eS

)− e2

8mec2

(
a(n)m · a∗(n)m + a(n−1)

m · a∗(n−1)
m

)
− 1

4meω
2
pe0

∣∣∣∣∇(eφ(n−1/2)
F − e2

4mec2

[
a(n)0 · a∗(n)−1 + a(n−1)

0 · a∗(n−1)
−1

+ a∗(n)0 · a(n)1 + a∗(n−1)
0 · a(n−1)

1

])∣∣∣∣2 = α(n−1/2), (20)

f
(
γ, n(n−1/2)

eS

) =


Te0 ln
(

n(n−1/2)
eS
ne0

)
if γ = 1

Te0
(

γ

γ−1

)( n(n−1/2)
eS
ne0

)γ−1
if γ 6= 1

, (21)

∫
∇
(
φ
(n)
S + φ(n−1)

S

2

)
· dσ = 0. (22)

Equations (14)–(22) represent the time-discrete form of our RPIC model. At timet = t (n),
when the quantitiesa(n−1)

m , φ(n−1), φ(n−1)
S , n(n−1)

e , n(n−1)
i , and particle velocitiesu(n−1/2)

p and
positionsx(n)p are known, Eqs. (15) are evaluated in order to interpolate particle data onto the
computational mesh to yieldn(n)e andn(n)i . Equations (16)–(22) are solved self-consistently
for a(n)m , φ(n), φ(n)S , n(n−1/2)

eS , andn(n−1/2)
eF . Equations (14) are then advanced in order to obtain

the time-advanced velocitiesu(n+ 1/2)
p and positionsx(n+1)

p .
The leapfrog algorithm, Eqs. (14), is well known and has been shown in past literature

to be numerically stable. We will therefore focus our attention on the nonlinear stability
analysis of the coupled Schr¨odinger equations, Eqs. (17). Following the approach outlined
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by Vu [31], Eqs. (17) can be recast as a time-discrete conservation law,

i

(
2ωm

c2δt

)(∣∣a(n)m

∣∣2− ∣∣a(n−1)
m

∣∣2)+∇ ·F(n−1/2) = 0,

F(n−1/2) ≡ [∇a(n−1/2)
m

] · a∗(n−1/2)
m − [∇a∗(n−1/2)

m

] · a(n−1/2)
m

+ 1

c2

(
χ(n−1/2)

m + 1

2
ξ (n−1/2)

m

)
a∗(n−1/2)

m − 1

c2

(
χ∗(n−1/2)

m + 1

2
ξ̂∗(n−1/2)

m

)
a(n−1/2)

m ,

where, as a reminder for the readers, the repeated indexm is to be summed over. The above
equation can be integrated over the volume of the simulation:

i

(
2ωm

c2δt

)(∫ ∣∣a(n)m

∣∣2 d3x−
∫ ∣∣a(n−1)

m

∣∣2 d3x
)
+
∫

dσ · F(n−1/2) = 0.

It is noted here that the above equation is the time-discrete version of Eq. (11). When bound-
ary conditions are such that there is no net fluxF(n−1/2) crossing the simulation domain’s
boundary, the above equation reduces to the well-known Manley–Rowe relation [36]:

ωm

∫ ∣∣a(n)m

∣∣2 d3x = constant.

Since each term of the left-hand side is positive-definite, the total energies contained in
the incident and scattered waves are rigorously bounded, regardless of the time stepδt .
Therefore, Eqs. (17) are unconditionally stable.

B. Spatial Discretization

Consider a computational domain consisting of a rectangle with 0≤ x≤ Lx and 0≤
y≤ L y. The computational mesh is staggered and consists of (Nx − 1)× (Ny− 1) rectan-
gular cells of equal size.xvkl , the physical coordinate of the vertices of the computation cells,
andxc

kl , the physical coordinate of the centers of the computational cells, are specified as
follows,

xvkl = (k− 1)δxêx + (l − 1)δyêy,

xc
kl = xvkl +

δx

2
êx + δy

2
êy,

whereδx ≡ Lx/(Nx − 1) andδy ≡ L y/(Ny − 1). Here,k andl are indices labeling the
computational cells. It is noted here that this is the same geometry as that of an earlier
Cartesian two-dimensional hybrid code [31].

The electron densityne, density envelopesneS andneF, ion densityni , scalar poten-
tial φ, scalar potential envelopesφS andφF , and electromagnetic field envelopesam with
m=−1, 0, 1, are cell-centered quantities.

Equations (14), the time-discrete representation of our particle model, are spatially dis-
cretized by replacing the operator∇ with the following numerical approximation,

[∇A]
(
xvkl

) ≈ [A
(
xc

kl

)+ A
(
xc

kl−1

)− A
(
xc

k−1l

)− A
(
xc

k−1l−1

)
2δx

]
êx

+
[

A
(
xc

kl

)+ A
(
xc

k−1l

)− A
(
xc

kl−1

)− A
(
xc

k−1l−1

)
2δy

]
êy, (23)
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where A(xc
kl) is any cell-centered variable, e.g., the electrostatic potentialφ(n). It is clear

from Eqs. (14) and (23) that when the scalar and vector potentials are cell-centered, as is the
case here, the electric fields are vertex-centered. These vertex-centered electric fields are
interpolated onto particle positions via bilinear B-spline of compact support [31]. These in-
terpolated electric fields are subsequently used in Eqs. (14) to advance the particle positions
and velocities in time.

Equations (15)–(22), the time-discrete representation of our field model, are spatially
discretized by replacing the operators∇ and∇2 with the following second-order numerical
approximations:

[∇A]
(
xc

kl

) ≈ [A
(
xc

k+1l

)− A
(
xc

k−1l

)
2δx

]
êx +

[
A
(
xc

kl+1

)− A
(
xc

kl−1

)
2δy

]
êy,

(24)[∇2A
](

xc
kl

) ≈ A
(
xc

k+1l

)− 2A
(
xc

kl

) +A
(
xc

k−1l

)
(δx)2

+ A
(
xc

kl+1

)− 2A
(
xc

kl

) +A
(
xc

kl−1

)
(δy)2

.

It is noted parenthetically that since no spatial enveloping is employed in the RPIC model,
the grid resolution requirement for RPIC is the same as that of standard explicit PIC codes,
i.e., the spatial grid size has to resolve the shortest wavelength of interest.

C. Domain Decomposition

The laser is taken to propagate primarily in thex-direction, and this choice necessitates the
use of many more computation cells in thex-direction than in they-direction. Henceforth,
they-direction shall always taken to be periodic to facilitate the use of fast Fourier transforms
(FFT) in solving field equations (see Section D). A one-dimensional parallel decomposition
in they direction has been applied to the two-dimensional computational mesh, as illustrated
in Fig. 2 where, as a specific example, the computational mesh consists of 128× 128
cells in thex–y (k–l ) plane and 16 processors are used. The computational volume is
partitioned intoNpro equal subdomains whereNpro is the number of processors, and each
subdomain is assigned to a processor and is henceforth referred to as that processor’s private
computational volume. In Fig. 2, the thin solid lines denote the boundaries between adjacent
computational cells, and the thick solid lines denote the boundaries between the processors’
private computational volumes. No parallel decomposition is performed in thex-direction,
and each processor holds field data and interpolated density data on cell centers interior
to the processor’s private computational volume. In addition, each processor also carries a
single layer of ghost cells immediately surrounding its private computational volume, as
illustrated by the dotted lines in Fig. 2b.

The particles are initially loaded into the processors and are subsequently reassigned
among the processors (through the use of interprocessor communications) as the particles’
positions evolve, in such a manner which ensures that each particle’s position is interior to
the private computational volume of the processor to which it is assigned.

D. Parallel Algorithms for Solving Field Equations

The spatially discretized versions of Eqs. (15)–(22) are solved by means of a splitting
algorithm where the equations are first linearized, and the resulting linearized equations
are then solved within a triple-nested modified Newton–Raphson iteration which, upon
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FIG. 2. The one-dimensional decomposition of the two-dimensional volume is illustrated. As a specific
example, the computational mesh consists of 128× 128 cells and 16 processors are used. The thin solid lines
denote boundaries between adjacent computational cells, and the thick solid lines denote boundaries between
the processors’ private computational volumes. Each processor carries a single layer of ghost cells immediately
surrounding its private computational volume, as illustrated by the dotted lines.

convergence, yields self-consistent solutions to the original nonlinearly coupled equations,
Eqs. (15)–(22). For a more detailed discussion of the splitting algorithm just described, see
Ref. [31–33].

The linearized Poisson equation forφ(n)S is solved by means of a standard conjugate
gradient algorithm with no preconditioning. This method is implemented to run concurrently
on all available processors. A more detailed discussion can be found in a previous work
[33].
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The Poisson equation forφ(n) is solved by either 2D FFT or a combination of 1D FFT
in the y-direction and tridiagonal matrix solves in thex-direction, depending on boundary
conditions. For example, if the scalar potentialφ(n) is taken to be 0 atx= 0 andx= Lx, the
Poisson equation can be solved using real-valued FFT in they-direction and sine FFT in
thex-direction. In this case, the∇2 operator is transformed to Fourier space symbolically
as follows:

∇2→ −k2
r

[
sin(kr δx/2)

kr δx/2

]2

− k2
s

[
sin(ksδy/2)

ksδy/2

]2

,

kr ≡ πr

Lx
, r = 0, 1, . . . , Nx − 2,

ks ≡ 2πs

L y
, s= 0, 1, . . . , Ny − 2.

The sine FFT in thex direction can be performed concurrently on all available processors,
and no interprocessor communication is required. Although the real-valued FFT in the
y-direction does require interprocessor communication, it has been implemented to take
advantage of any concurrency allowed during the course of an FFT. In particular, assuming
that the number of processorsNpro is a power of 2, the number of times interprocessor
communication is required is only 2 log2 Npro per FFT in they-direction. It is found that
this is not a significant overhead, as will be shown in Section 6C.

The linearized Schr¨odinger equations are solved using the pseudo-spectral method which
employs complex 1D FFT in they-direction (the field envelopes are complex-valued) and
1D tridiagonal solves in thex-direction. Here, the∇ and∇2 operators can be written
symbolically as follows:

∇ → êx
∂

∂x
− iks

[
sin(ksδy/2)

ksδy/2

]
êy,

∇2→ ∂2

∂x2
− k2

s

[
sin(ksδy/2)

ksδy/2

]2

.

The nonlinear interaction terms in the Schr¨odinger equations, e.g.,n(n−1/2)
eS a(n−1/2)

0 , are
treated iteratively as known source terms and are computed in configuration space in order
to avoid convolutions in Fourier space. The tridiagonal solves in thex direction can be
performed concurrently on all available processors, and no interprocessor communication
is required.

The macroparticles are scattered evenly across the processors initially. For simulations in
which the external electromagnetic field is moderate or weak, the density perturbations are
small (|δne/ne0|¿1 and|δni /ni 0|¿1). As a result, the particles do not tend to be spatially
bunched, and load balance is well maintained throughout the simulation.

E. Filtering of Electromagnetic Wave Envelopes

The pseudo-spectral method for solving the field equations requires that they-direction
is taken to be periodic. Consequently the electromagnetic waves could recycle in that
direction. As a result, SRS and SBS may be amplified preferentially in they-direction
since the effective gain region in that direction is essentially infinite. In order to suppress
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nonphysical wave recycling, the following filtering scheme is applied to the electromagnetic
wave envelopes at each and every computational cycle:

h0(ky) =
{

1 if |ky/k0| ≤ 2/F,

0 otherwise

h1(ky) =
{

1 if |ky/k1| ≤ L y/Lx,

0 otherwise

h−1(ky) =
{

1 if |ky/k−1| ≤ L y/Lx,

0 otherwise

k0 = ω0

c

(
1− ω

2
pe0

ω2
0

)1/2

,

k1 = ω0

c

(
1+ 2

ωpe0

ω0

)1/2

,

k−1 = ω0

c

(
1− 2

ωpe0

ω0

)1/2

.

Here,F is the f/number of the focusing optics. The electromagnetic wave envelopesa0, a1,
anda−1 are filtered usingh0,h1, andh−1, respectively. In all of our simulations, it is observed
that the electromagnetic wave spectra are not artificially cut off by the filters presented above;
i.e., the important nonzero contributions of the wave spectra are far removed from the cutoff.
Consequently, the filters do not introduce adverse numerical effects on the simulation results.
Furthermore, it is noted that in all of our simulations, the ratioL y/Lx (the aspect ratio of
the simulation domain) is always chosen to be sufficiently large such that the simulation
results are not required to stay within the paraxial limit.

6. RESULTS AND DISCUSSION

The code has been tested in both one and two dimensions. A timing study has been
performed, and the results indicate that our code has a high degree of parallel efficiency.
Details of this timing study will be presented below, along with results of a two-dimensional
test simulation of coexisting SBS, SRS, and LDI.

A. Numerical Dissipation

Two of the most prominent types of numerical dissipation will be discussed: (1) electron–
ion thermal equilibration and (2) electron heating. Electron–ion thermal equilibration arises
from long-range Coulomb collisions between electrons and ions and acts to bring elec-
trons and ions to thermal equilibrium in an energy-conserving manner. While the energy-
conserving aspect of this interaction is reflected in the standard explicit PIC algorithm, the
equilibration time (due to numerical collisions) is much too short compared to proper phys-
ical values. RPIC corrects this deficiency by eliminating the high-frequency response in the
ions and thereby eliminating numerical collisions that give rise to electron–ion thermal equi-
libration. As an illustration, one-dimensional simulations are performed withTe/Ti = 30
using the standard explicit PIC algorithm and ASPEN, and the time histories of the ion
and electron temperatures are shown in Fig. 3. In both types of simulations,ωpeδt =π/10,
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FIG. 3. Time histories of the electron and ion temperatures for periodic, undriven simulations using standard
explicit PIC and ASPEN are shown. In both types of simulations,ωpeδt =π/10, δx/λDe= 1, Lx/λDe= 1024,
Te/Ti = 30,mi /me= 1836, and electrons and ions are both represented by 64 macroparticles per computational
cell. While there is significant transfer of energy from electrons to ions in the standard PIC method, there is a total
absence of energy transfer in ASPEN.
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FIG. 3—Continued

δx/λDe= 1, Lx/λDe= 1024,Te/Ti = 30, mi /me= 1836, and electrons and ions are both
represented by 64 macroparticles per computational cell. The system is undriven with pe-
riodic boundary conditions. It is evident that while there is significant energy transfer from
electrons to ions with the standard explicit PIC algorithm, there is a total absence of energy
transfer with ASPEN.
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Numerical dissipation due to finite-grid (aliasing) effects manifests itself in the heating
of the electron distribution function even in simulations where there is no external driving
field. Such numerical dissipation is nonphysical, does not conserve energy, and is common
to both standard explicit PIC and RPIC. The currentĴ(k, ω) and the electric field̂E(k, ω)
can be expressed via the phenomenological relationĴ(k, ω) = νÊ(k, ω), whereν is the
electron numerical collision rate. The rate of electron heating is given by Ohmic heating,

d

dt

(∫
neTe d3x

)
= ν

∫ 〈 |Ê(k)|2
4π

〉
d3k, (25)

where〈|Ê(k)|2〉 is given in Eqs. (B.2). As an example, consider the simulations presented
in Fig. 3. The rate of electron heating in ASPEN, measured from Fig. 3d, is used in con-
junction with Eqs. (25) and (B.2) to calculate the electron numerical collision rateν/ωpe0 '
2.4× 10−4. The dependence ofν on various parameters, e.g.,δx/λDe, and various interpo-
lation schemes has been examined in detail by Hockney [37]. In quantitative comparisons
of RPIC and quasilinear Zakharov simulations [34], it is important to includeν in the
dissipation of Langmuir waves in addition to electron Landau damping because at long
wavelengths where electron Landau damping is essentially nonexistent, numerical dissipa-
tion is dominant. In the specific example given in Fig. 3, numerical dissipation dominates
over electron Landau damping forkλDe< .213.

B. Two-Dimensional Simulation of SBS, SRS, and LDI

The simulation is performed in a rectangular simulation box withL y= 12µm andLx =
25 µm. The boundary conditions are periodic in they-direction, and aperiodic in the
x-direction. The electromagnetic pump wave enters the simulation domain atx= 0 and
leaves the simulation domain atx= Lx. The corresponding boundary conditions for the
scalar and vector potentials are

φ(0, y, t) = φ(Lx, y, t) = 0,

φS(0, y, t) = φS(Lx, y, t) = 0,

êx · ∇a0(0, y, t) = ik0(2ain(y)− a0(0, y, t)),

êx · ∇a0(Lx, y, t) = ik0a0(Lx, y, t),

êx · ∇a1(0, y, t) = −ik1a1(0, y, t),

êx · ∇a1(Lx, y, t) = ik1a1(Lx, y, t),

êx · ∇a−1(0, y, t) = −ik−1a−1(0, y, t),

êx · ∇a−1(Lx, y, t) = ik−1a−1(Lx, y, t).

Here,ain(y) is a specified function and corresponds to the incident electromagnetic wave
at x= 0. ain is related to the incident laser intensityI as follows:

|ain(y)|2 =
(

8π

cω2
0

)
I (y).
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For the particular simulation under consideration,ain is specified as follows:

ain(y) =
(

8πI0

cω2
0

)1/2( 2 f

k0σ0

)
exp

[
− 1

4σ 2
0

(
y− Ly

2

)2
]
,

σ 2
0 =

(
2 f

k0

)2

− i

(
Lx

4k0

)
.

Here,I0 is the diffraction-limited intensity of the laser and is taken to be 6.7× 1015 W/cm2.
ω0, the frequency of the incident laser, is taken to be 5.37× 1015 Hz and corresponds to a
frequency-tripled Nd–glass laser with vacuum wavelengthλv = 0.351µm. The f/number
of the focusing optics, defined to be the ratio of the focal length of the optical lens to
its diameter, is taken to be 4.0. It is noted here that with the above boundary conditions
for am (m=−1, 0, 1), electromagnetic noise is not injected into the simulation domain.
Consequently, parametric instabilities such as SBS and SRS develop from noise in the
electron and ion density. It is noted here that the electromagnetic field is taken to be polarized
in thez-direction (the ignorable coordinate), andχm andξm can therefore be set identically
to 0 at all times.

Initially, the plasma is spatially uniform and stationary and the initial condition foram is

a0(x, y, 0) =
(

8πI0

cω2
0

)1/2( 2 f

k0σ(x)

)
exp

[
− 1

4σ 2(x)

(
y− Ly

2

)2
]
,

σ 2(x) =
(

2 f

k0

)2

+ i

(
x − Lx/2

4k0

)
,

a1(x, y, 0) = 0,

a−1(x, y, 0) = 0.

The plasma consists of protons and electrons withni = ne= 8.9× 1020 cm−3, Te= 1.6 keV,
andTi = 0.1 keV. The ratio of specific heatsγ is taken to be 1. The simulation box has
4096× 256 (1 million) computational cells, each particle species is represented by 64
particles per computational cell (a total of 128 million particles), and the time step is taken to
be ωpe0δt =π/10. For this particular simulation, SBS, SRS, and LDI are observed to occur
simultaneously. The simulation consists of 36,000 computational cycles and corresponds
to a physical time of 7 ps.

Figure 4 shows the time histories of the SBS and SRS reflectivities. While SRS has
saturated, SBS is still undergoing exponential growth. Figure 5 is a color-coded contour
plot of the time-averaged 2D (kx-ky) LW spectrum, accompanied by theky-averaged LW
spectrum. The LW spectrum is seen to consist of two LWs whose locations ink-space are
predicted accurately by wave-matching conditions. First, linear wave-matching conditions
for SRS require that

kLW1λDe =
(
vthe

c

)(
ω0

ωpe0

)[(
1− ω

2
pe0

ω2
0

)1/2

+
(

1− 2
ωpe0

ω0

)1/2
]
,

wherekLW1 is the wavenumber of the LWs generated by SRS. For the simulation under dis-
cussion,kLW1λDe≈ 0.277. This SRS-generated LW undergoes the LDI parametric process
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FIG. 4. Time histories of the SBS and SRS reflectivities for a two-dimensional simulation are shown. The
laser is Gaussian diffraction-limited withf/4, I0= 6.7× 1015 W/cm2, andλ0= 0.351µm. The plasma consists
of protons and electrons withni = ne= 8.9× 1020 cm−3, Te= 1.6 keV, andTi = 0.1 keV. The ratio of specific
heatsγ is taken to be 1. The simulation box has 4096× 256 (1 million) computational cells, and each particle
species is represented by 64 particles per computational cell (a total of 128 million particles). For this simulation,
ωpe0δt =π/10.

in which it decays into another LW and an IAW whose wavenumbers are given by linear
wave-matching conditions,

kLW2λDe = −kLW1λDe+ 2

3

(
cs

vthe

)
,

kIAW2λDe = kLW1λDe− kLW2λDe,

wherecs andvthe are the ion acoustic and electron thermal speeds, respectively. Here,cs

is computed from the kinetic linear dispersion relation for IAWs to becs/c≈ 2.63× 10−3.
For the simulation under discussion,kLW2λDe≈−0.246 andkIAW2λDe≈ 0.523. Figure 6
is a color-coded contour plot of the time-averaged 2D (kx-ky) IAW spectrum, accompa-
nied by theky-averaged IAW spectrum. The IAW spectrum is seen to consist of (a) the
SBS-generated IAW and its second and third harmonics, (b) the LDI-generated IAW at
kIAW2 ≈ 0.523, (c) the beat waves resulting from the interaction between the SBS-generated
IAW and the LDI-generated IAW, and (d) the density profile modification due to the pon-
deromotive force. Linear wave-matching conditions require that the SBS-generated IAW
be located at

kIAW3λDe = 2

(
vthe

c

)(
ω0

ωpe0

)[(
1− ω

2
pe0

ω2
0

)1/2

− cs

c

]
.

For the simulation under consideration,kIAW3λDe ≈ 0.337. The second and third harmonics
of this SBS-generated IAW must then be located atkIAW4λDe≈ 0.674 andkIAW5λDe≈ 1.01.
The pair of IAWs which result from the beating between the SBS-generated and LDI-
generated IAWs atkIAW3 andkIAW2 are expected to be located atkIAW7λDe≈ 0.860 and
kIAW9λDe≈ 0.186.

Figure 7 is a color-coded contour plot of the 2D (x-y) ion-density perturbation, accompa-
nied by thex-averaged andy-averaged ion-density perturbation. Figure 7 indicates a density
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TABLE Ia

No. of processors Grid size CPU seconds Speed up

2 4096× 256 1183
4 4096× 256 642.4 1.84
8 4096× 256 339.7 1.89

16 4096× 256 158.7 2.14
32 4096× 256 78.86 2.01
64 4096× 256 38.88 2.03

perturbation of about 4% due to the ponderomotive force. The short-wavelength density
perturbations in they-averaged ion density are primarily due to SBS. Figure 8 is the distribu-
tion of electrons leaving (a) the left boundary and (b) the right boundary. These distributions
indicate the asymmetric development of hot electron tails, which is consistent with the fact
that the primary LW (due to SRS) is stronger than the secondary LW (due to LDI).

It is noted here that even in a single laser hot spot such as the one shown in this section,
an abundance of parametric instabilities whose daughter waves exist on highly disparate
time scales can coexist and interact in a complex manner. The interaction between these
instabilities and the role of nonlinear and quasilinear kinetic effects on these instabilities
are not well understood. We plan to use ASPEN to address these issues, and the results will
be reported in a future publication.

C. Timing Studies

The parallel efficiency of our code ASPEN depends primarily on two sets of operations:
(1) the FFT algorithm, which is used extensively to solve for the field envelopes as discussed
previously, and (2) the particle pusher and interpolation algorithm. As a result, two sets of
timing studies were performed in order to assess the parallel efficiency of the FFT and the
overall parallel efficiency of ASPEN. The results to be presented below are particular to
the Los Alamos ASCI computer, which consists of Silicon Graphics’ 250 MHz R10000
processors.

A computational mesh of 4096× 256 is employed in our test of the FFT algorithm.
Here, 500 complex-valued 2D FFTs are performed, and the CPU time required to do the
task is recorded as a function of number of processors and is shown in Table Ia. The
average speedupx, wherex5 ≡ CPU time required by 64 processors/CPU time required
by 2 processors, is calculated from Table Ia to be 1.98, indicating that the FFT algorithm
performs with near-perfect parallel efficiency in this regime. Next, a similar test is performed
with a computational mesh of 4096× 64, and the results are summarized in Table Ib. The
average speedup is calculated from Table Ib to be 1.80.

TABLE Ib

No. of processors Grid size CPU seconds Speed up

2 4096× 64 186.
4 4096× 64 98.2 1.89
8 4096× 64 50.4 1.95

16 4096× 64 27.5 1.83
32 4096× 64 17.4 1.58
64 4096× 64 9.73 1.79



FIG. 5. Color-coded contour plots of the Langmuir wave energy spectrum corresponding to the case described
in Fig. 4. The spectrum has been averaged over the entire duration of the simulation (ωpe0T = 1.13× 104, cor-
responding to a physical time of 7 ps). For clarity, only a small part of the 2Dk-space is shown. The top panel
is theky-averaged Langmuir wave spectrum. The primary Langmuir wave is driven by SRS, and the secondary
Langmuir wave is, in turn, driven by the primary Langmuir wave.

FIG. 6. Color-coded contour plots of the ion acoustic wave energy spectrum corresponding to the case de-
scribed in Fig. 4. The spectrum has been averaged over the entire duration of the simulation (ωpe0T = 1.13× 104,
corresponding to a physical time of 7ps). For clarity, only a small part of the 2Dk-space is shown. The top panel
is theky-averaged ion acoustic wave spectrum. The SBS-generated ion acoustic wave and its second and third har-
monics and the LDI-generated ion acoustic wave are seen to coexist and interact via nonlinear beating of the waves.
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FIG. 7. Color-coded contour plots of the ion density perturbation corresponding to the case described in
Fig. 4. The ion density perturbation shown here is a snapshot atωpe0t = 1.13×104. Also shown are thex-averaged
andy-averaged ion density perturbations. The ion density perturbation due to the ponderomotive force is about
4%, and the ion density perturbation due to SBS and LDI is about 2%.

Second, in order to assess the overall parallel efficiency of ASPEN, a test simulation
is performed in which the computational mesh consists of 1024× 256 cells and the ion
and electrons are represented by a total of 256 particles/cell. The simulation is performed,
and the CPU time required to execute 10 time cycles is recorded and is summarized in
Table II. The average speedup, defined previously, is computed from Table II to be 1.91 and
indicates that overall, ASPEN has a high degree of parallel efficiency. In fact, this type of
performance is similar to that reported for HERCULES [32], a three-dimensional massively
parallel hybrid PIC code designed specifically for low-frequency parametric interactions in
laser-produced plasmas, in which a speedup factor of 1.9 was obtained for a CRAY T3D
with 512 processors.

TABLE II

No. of processors Grid size No. of particles/cell CPU seconds Speed up

2 1024× 256 256 640
4 1024× 256 256 320 2.00
8 1024× 256 256 158 2.02

16 1024× 256 256 81.2 1.95
32 1024× 256 256 45.0 1.81
64 1024× 256 256 25.0 1.80
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FIG. 8. Contour plots of the electron distribution function corresponding to the case described in Fig. 4:
(a) electrons that leave the boundary located atx= Lx (electrons that move in the direction of the primary
Langmuir wave), and (b) electrons that leave the boundary located atx= 0 (electrons that move in the direction of
the secondary Langmuir wave). The asymmetry in the hot electron tails is due to the fact that the primary Langmuir
wave is stronger than the secondary Langmuir wave.

7. SUMMARY AND CONCLUSIONS

In this report, a massively parallel two-dimensional RPIC code, implemented on the Los
Alamos ASCI parallel computer, appropriate for modeling parametric instabilities in laser-
produced plasmas with both low-frequency and high-frequency daughter waves is presented.
The physics model contained therein is an extension of an earlier model in which only low-
frequency parametric instabilities are treated [33]. The RPIC model consists of three coupled
nonlinear Schr¨odinger-like equations for the vector potentials, Poisson equations for the
scalar potentials, an exactly integrable electron momentum equation, and the equations of
motion for the finite-size electron and ion particles. The Schr¨odinger equations are solved
using the standard pseudo-spectral method. The Poisson equation for the instantaneous
electrostatic potential is solved using a combination of tridiagonal matrix solver and FFT.
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The low-frequency electrostatic potential is solved using the standard conjugate gradient
algorithm without preconditioning.

Temporal mean-square noise spectra have been calculated analytically and compared with
simulation results. The availability of these noise spectra facilitate quantitative comparisons
between the RPIC model and the Zakharov model augmented with quasilinear evolution
of the spatially averaged electron distribution function [34]. Two-dimensional simulations
of SRS, SBS, and LDI and the interaction of these instabilities have been performed, and
the results of one such simulation was presented. The results show a complex interaction
between these instabilities, which occur on very disparate time scales. We plan to utilize
ASPEN to study the interaction between these instabilities, a subject of intense interest to
the ICF community at present.

In our test simulations for which there are 64 particles/species/cell, it was found that
with 128 processors, the code requires about 0.08µs/particle/time step. The timing results
indicate that code has a high degree of efficiency, evidenced by the fact that the CPU time
required is reduced by a factor of about 1.9 on average whenever the number of processors
is doubled.

APPENDIX A

Derivation of Electron Equation of State

Summing Eqs. (2) over the electron distribution, one obtains the following electron fluid
equation,

me

(
∂Ue

∂t
+ Ue · ∇Ue

)
= e∇φ − e2

4mec2
∇(am · a∗l e−i (m−l )ωpe0t

)− 1

ne
∇ pe

(A.1)

Ue ≈ UeS+ 1

2

(
UeFe−iωpe0t + U∗eFeiωpe0t

)
,

whereUe and pe are the longitudinal electron fluid velocity (defined in Section 3) and
electron pressure, respectively. The high-frequency and low-frequency parts of Eqs. (A.1)
describe the electron response due to ion acoustic and Langmuir waves, respectively. Ne-
glecting the small contributions of both the electron pressure and the advection term, and
assuming|∂UeF/∂t |¿ωpe0|UeF|,UeF is obtained from the high-frequency component of
Eqs. (A.1):

UeF ≈ − 1

imeωpe0
∇
(

eφF − e2

2mec2
(a0 · a∗−1+ a∗0 · a1)

)
. (A.2)

Substituting Eq. (A.2) into Eqs. (A.1) and neglecting the low-frequency electron inertia,
the low-frequency component of Eqs. (A.1) can be recast as follows:

1

4meω
2
pe0

∇
∣∣∣∣∇[eφF − e2

2mec2
(a0 · a∗−1+ a∗0 · a1)

]∣∣∣∣2
= e∇φS− 1

neS
∇ peS− e2

4mec2
∇(am · a∗m). (A.3)
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For moderate incident electromagnetic field intensities, the bulk electron distribution is
not expected to be perturbed significantly, and the low-frequency electron pressure can be
assumed to obey an adiabatic equation of state with an arbitrary ratio of specific heatsγ .
Following the approach outlined previously by Vu [31–33], Eq. (A.3) can be integrated to
obtain the electron equation of state, and the results are shown in Eqs. (8) and (9).

APPENDIX B

Noise Spectra

In the absence of external fields, the linearized Vlasov equations for a two-component
(electrons and ions) plasma described by Eqs. (2)–(10) are as follows,

∂δ fe

∂t
+ u · ∇δ fe+ ∂

∂u

·
[

e

me

∑
p∈e

qpS(x− xp)δ(u− up0)
∂

∂xp

[∫
φ(x′)S(x′ − xp) d3x′

]]
= 0,

∂δ fi

∂t
+ u · ∇δ fi − ∂

∂u

·
[

eZ

mi

∑
p∈i

qp S(x− xp)δ(u− up0)
∂

∂xp

[∫
φS(x′)S(x′ − xp) d3x′

]]
= 0,

xp ≡ xp0+ up0t,

∇2φ = 4πe(ne1− Zni 1),

∇2φS = 4πe

(
ne0

eφS

Te
− Zni 1

)
,

ne1(x, t) ≡
∫
δ fe(x, u, t) d3u+

∑
p∈e

qpS(x− xp)+ ene0,

ni 1(x, t) ≡
∫
δ fi (x, u, t) d3u+

∑
p∈i

qpS(x− xp)− ene0,

whereS(x) is the particle interpolation function whose Fourier transform isŜ(k), ne0 is the
uniform background electron number density, andδ fe andδ fi are the perturbations from
straight-line particle orbits.

Because the time step of the simulation is usually small, i.e.,ωpe0δt¿ 1, the effects
of time discretization can be neglected. Also, because a staggered mesh is employed (see
Section 5), the operators∇ and∇2 can be written symbolically as follows:

∇ = i k̂,

∇2 = −k̂2,

k̂ ≡ kx

[
sin(kxδx/2)

kxδx/2

]
ex + ky

[
sin(kyδy/2)

kyδy/2

]
ey.
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Solving the above equations forδ fe andδ fi in Fourier space, assuming Maxwellian electrons
and ions of temperatureTe0 andTi 0, respectively, and integrating the results over velocities,
one obtains

n̂e1(k, ω)
ne0

= Ŝ(k)
Ne

1

1+ χe(k, ω)

∑
p∈e

e−i k·xp0δ(ω − k · up0)

+ Ŝ(k)
Ni

χe(k, ω)
ε̄(k, ω)

1+ χ̄e(k)
1+ χe(k, ω)

∑
p∈i

e−i k·xp0δ(ω − k · up0),

n̂i 1(k, ω)
ni 0

= Ŝ(k)
Ni

1+ χ̄e(k)
ε̄(k, ω)

∑
p∈i

e−i k·xp0δ(ω − k · up0), (B.1)

Ê(k, ω) = − i k̂

k̂2

4πene0Ŝ(k)
Ne

1

1+ χe(k, ω)

∑
p∈e

e−i k·xp0δ(ω − k · up0)

+ i k̂

k̂2

4πene0Ŝ(k)
Ni

1

ε̄(k, ω)
1+ χ̄e(k)

1+ χe(k, ω)

∑
p∈i

e−i k·xp0δ(ω − k · up0).

The susceptibilities and dielectric response are defined as follows:

χe(k, ω) ≡ −1

2

(
kDe
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)2

Ŝ2(k)Z′
(

ω√
2kvthe
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ε̄(k, ω) ≡ 1+ χ̄e(k)+ χi (k, ω),

v2
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me
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thi ≡
Ti 0

mi
,

ω2
pe0 ≡

4πe2ne0

me
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4πZe2ne0

mi
,

k2
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ω2
pe0

v2
the

, k2
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ω2
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v2
thi

.

Here, it has been assumed that the electrons and ions in the simulation domain are represented
by Ne andNi equally weighted macroparticles, respectively.Z(ξ) is the plasma dispersion
function and is defined as follows:

Z(ξ) ≡ 1√
π

∫ ∞
−∞

e−z2

z− ξ dz, Im ξ >0.

Using Parseval’s theorem and the Kramers–Kronig relations, the temporal mean-square
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density fluctuations are evaluated analytically from Eqs. (B.1):〈∣∣∣∣ n̂e1(k)
ne0

∣∣∣∣2
〉
= 1

Ne

∑
g

S2(k − kg)

1+ χe(k − kg, 0)

+ 1

Ni

∑
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S2(k − kg)χ
2
e(k − kg, 0)[1+ χ̄e(k − kg)]

ε̄(k − kg, 0)[1+ χe(k − kg, 0)]2
,

〈∣∣∣∣ n̂i 1(k)
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∣∣∣∣2
〉
= 1

Ni

∑
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, (B.2)

〈 |Ê(k)|2
4πne0Te0

〉
= 1

Ne

∑
g

χe(k − kg, 0)

1+ χe(k − kg, 0)
+ 1

Ni

∑
g

χe(k − kg, 0)[1+ χ̄e(k − kg)]

ε̄(k − kg, 0)[1+ χe(k − kg, 0)]2
,

kg = 2πp

δx
êx + 2πq

δy
êy p,q = integer.

Here,|kx| ≤ π/δx, |ky| ≤ π/δy, and
∑

g represents the sum over all Brillouin zones. In
effect,

∑
g accounts for aliasing effects ink-space. It is noted here that in the limit where

|kxδx|¿1 and|kyδy|¿1, Eqs. (B.2) yield the standard mean-square density fluctuations
in a thermal plasma. Using Eqs. (7) and (B.1), the temporal mean-square fluctuations of the
density and potential envelopes are evaluated explicitly:
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