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A fully kinetic, reduced-description particle-in-cell (RPIC) model is presented in
which deviations from quasineutrality, electron and ion kinetic effects, and nonlinear
interactions between low-frequency and high-frequency parametric instabilities are
modeled correctly. The model is based on a reduced description where the electro-
magnetic field is represented by three separate temporal envelopes in order to model
parametric instabilities with low-frequency and high-frequency daughter waves. Be-
cause temporal envelope approximations are invoked, the simulation can be per-
formed on the electron time scale instead of the time scale of the light waves. The
electrons and ions are represented by discrete finite-size particles, permitting electron
and ion kinetic effects to be modeled properly. The Poisson equation is utilized to
ensure that space-charge effects are included. The RPIC model is fully three dimen-
sional and has been implemented in two dimensions on the Accelerated Strategic
Computing Initiative (ASCI) parallel computer at Los Alamos National Laboratory,
and the resulting simulation code has been named ASPEN. We believe this code is the
first particle-in-cell code capable of simulating the interaction between low-frequency
and high-frequency parametric instabilites in multiple dimensions. Test simulations
of stimulated Raman scattering, stimulated Brillouin scattering, and Langmuir decay
instability are presented.

Key Words:massively parallel; fully kinetic; reduced-description; two dimen-
sional; particle-in-cell; parametric instabilities; stimulated Brillouin scattering; stim-
ulated Raman scattering; Langmuir decay instability.

1. INTRODUCTION

In inertial confinement fusion (ICF) applications, an external high-frequency monoct
matic laser is employed to irradiate the plasma. The external monochromatic electror
netic wave, due to its interaction with the plasma, can undergo parametric instabilities, w
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SIMULATING PARAMETRIC INSTABILITIES 13

decay into various combinations of high-frequency or low-frequency daughter waves
Recent experiments [2, 3] and Zakharov simulations [4, 5] indicate that in ICF plasma
interest, nonlinear processes such as the Langmuir decay instability (LDI) and Langt
collapse can affect the growth and saturation of the stimulated Raman scattering (
instability. Due to a multitude of spatial and temporal scales that exist in such plasmas
the fact that the external driving electromagnetic field is of high frequency, general-purg
explicit, implicit, and hybrid particle-in-cell (PIC) algorithms [6, 30] are either incapab
of simulating the actual physics, or computationally inefficient. In recent works [31-3
a special-purpose hybrid PIC model was presented in which the electrons are model
an adiabatic fluid with an arbitrary ratio of specific hepgtsaand the electromagnetic field
model is based on a temporal envelope approximation. This hybrid PIC model was im
mented in three dimensions on a CRAY-T3D with 512 processors and was shown to m
ion Landau damping, finite-Debye-length effects, aperiodically driven stimulated Brillot
scattering (SBS), and the interaction between SBS and the filamentation instability
correctly [31-33]. However, this hybrid model does not include electron kinetic effects
is therefore inadequate for situations in which high-frequency parametric instabilities, s
as stimulated Raman scattering, play a significant role.

In this paper, we present a fully kinetic reduced-description particle-in-cell (RPIC) mo
in which low-frequency and high-frequency parametric instabilities and their interaction
modeled accurately and efficiently. It can be shown that in the limit where high-freque
instabilities are not important, RPIC reduces to the aforementioned hybrid model [31-

RPIC treats electrons and ions as discrete finite-size particles, allowing linear and no
ear kinetic effects to be modeled correctly for both electrons and ions. The Poisson equ
is solved to ensure that space-charge effects are included. The electromagnetic field is
eled using a temporal envelope representation that results in three couplediSgér-like
equations for the envelopes of: (1) the incident and SBS-scattered electromagnetic
(2) the frequency-downshifted SRS-scattered electromagnetic field, and (3) the freque
upshifted SRS-scattered electromagnetic field. A novel feature of RPIC is the methc
extracting the temporal electron density envelopes from the instantaneous electron de
which, in turn, is obtained by interpolating from the particles onto the computational me
It is important to note here that unlike standard explicit PIC models in which the electr
and ions are advanced in phase-space using the same electric field, RPIC legislate
the ion response has no high-frequency components. This is justified because the iol
too massive to have any appreciable high-frequency response. The elimination of |
frequency components from the ion response is a unique feature of RPIC and is a cr
element in allowing secondary parametric decay processes to be modeled accurately.
out the elimination of high-frequency components from the ion response, high-freque
scattering of low-frequency ion acoustic waves would tend to obscure these secondar
cay processes. It has been shown in a recent work of Sanbonetatis{B84] that there is
excellent quantitative agreement between RPIC and a quasilinear Zakharov (fluid) m
in the weakly driven regime where the Zakharov model is generally anticipated to be vz
This quantitative agreement includes Langmuir wave spectra, acoustic wave spectra,
tron distribution function, and time-history of the Langmuir wave energy. Such quantita
agreement has been an elusive goal of plasma simulations of nonlinear parametric proc
occuring in ICF plasmas until now.

The rest of this paper is divided into six sections. In Section 2, we describe the ph
cal model appropriate for simulating parametric instabilities with both high-frequency ¢
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low-frequency daughter waves. The conservation laws which RPIC obeys are shown
discussed in Section 3. In Section 4, the temporal mean-square noise spectra are cha
ized both analytically and numerically. This is of importance because in the aforementic
work of Sanbonmatsat al. [34], where quantitative comparisons between ASPEN and
guasilinear Zakharov model were made, one must be able to characterize the noise s
in ASPEN so that these spectra can be imposed as noise sources in the quasilinear Zal
simulations. In Section 5, the numerical algorithm for advancing the governing equatsi
in time and its numerical properties are discussed. In Section 6, test simulations of
driven Landau-damped Langmuir waves and of SRS and the Langmuir decay instat
(LDI) are presented. Section 7 is a summary of our results and conclusions based on
results.

2. RPIC MODEL

In the presence of an electromagnetic pump wave of frequegcthe self-consistent
vector potential, scalar potential, and density response of a plasma with uniform backgrt
plasma frequency e can be written as

A, t) = %(am(x, peent 4 af (x, yeen),

1 . )
PO, D) = §s(6 ) + 5 (¢ (6 e + G (x, D), (1)
Ne(X, t) = Nes(X, t) + %(neF(X, et +nto(x, tert),

where the integer indemn=—1, 0, 1, wm = wo + Mwyen, and the convention of summing
over repeated indices is assumed. The temporal envelppes-, andngr are complex-
valued and are assumed to vary on a time scale much longer #yan<. The envelope
ap(x, t) represents the incident electromagnetic field and the SBS-scattered electrol
netic field. The envelopea_;(x,t) anday(x,t) represent the scattered electromagnet
field due to frequency-downshifted and frequency-upshifted SRS, respectivelgd ¢
represent electrostatic potentials associated with low-frequency and high-frequency w.
respectively, including ion acoustic waves (IAWs) and Langmuir waves (LWsjx, t)
includes the background electron density and any low-frequency electron density pe
bation.ngg (X, t) is the electron density associated with high-frequency waves. It is noi
here that in writing Egs. (1), one has tacitly neglected harmonic generation of both the |
waves and LWs. In fact, for situations of interest to the ICF effort, the laser intensity is
sufficiently high to make harmonic generation important. In particular, in writing Egs. (
one assumes that the electron density response can be expressed as a linear combin:
IAWSs and LWs. In order for the model to be numerically tractable, one must, therefore
able to extract the temporal envelopgsandner from the instantaneous electron density
which, in turn, is computed by interpolating particle data onto the computational mesh.
task of calculatingnesandngr from ne is a novel feature of this work and will be discussec
subsequently. It is worth noting that by applying the temporal envelope approximation,
has eliminated the laser timescale from the model, and the time step of the simulatic
limited by the Courant condition of the thermal electrons, whereas with standard exp
PIC models, the time step of the simulation is limited by the Courant condition of the i
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wave. Thus, the CPU time required by RPIC is less than that of standard explicit PIC mc
by the ratio of the electron thermal speed to the speed of light. Typically, this saving is al
one order of magnitude.

Unlike standard PIC models in which the electrons and ions are advanced in phase-
using the same electric field, RPIC advances the particles as follows:

due
Medt
dx
dt
e Vhs— S0V (an- an)
dt ST amc? fm - 8m),
%
dt

=eVep — V(am . ai*efi(mfl)wpmt)’

AmeC?

= Ue,

)

m;
= Uj.

In writing Egs. (2), one has assumed that the electrons are nonrelativistic. In Egs. (2)
electron response has been averaged over the laser time scale, and the ion respor
likewise been averaged over the electron time scale [31-33]. It can be shown, withir
framework of kinetic theory, that by eliminating the high-frequency components of 1
electric field under whose influence the ions are advanced, one has: (a) eliminated
electron collisions completely and (b) reduced the ion velocity diffusion substantially.
a result, secondary decay processes such as LDI can be modeled accurately in an ef
manner. In fact, it has been shown [34] that our PIC model can capture at least three
of secondary decays beyond the primary decay. The elimination of ion—electron collisic
justified because the plasmas under consideration are sufficiently hot that they are esse
collisionless.

The electron and ion number densities are computed by interpolating particle data,

—ens(x, t) = Y dpS(x — Xp(1)),

pee

eZin (X, 1) = > gpSX — Xp(t)),

pei

®)

whereS(x) is the particle interpolation function and is taken to be the biquadratic B-spl
of compact support.
The scalar potentials are obtained from Poisson’s equations,

V2p = 4ne<ne -Y'z ni> :
Vips = 4ne<nes— >z ni> :

where one has made use of the fact that the ion density in this model does not he
high-frequency component.

The self-consistent vector potentfaldescribed in Egs. (1) can be shown to excite higt
frequency electron and ion motions with velocities = eA/mec andutj = —ZjeA/m;c
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[31], which in turn give rise to currents of the forha= €n.A /mec andJ; = Z?e’n;A/mc.
The net transverse current is obtained by summing over the individual currents an
projecting out any longitudinal contribution as follows:

Zn
Jr ~ —— |4né? S lAa-v
T 411[” (me Zm) X

V2y = 4n€?A .V +Zzi2ni
Me —m; '

Here,c is the speed of light. The indéxdenotes the ion specieg;, m;, andn; are the
ionization state, ionic mass, and number density ofithéon species. Likewisemne and
ne are the electronic mass and electron number density, respectively. It is notedishat
defined such tha¥ - Jt =V -A=0.

Substituting the above expression fdr into Ampere’s law,V x B= (4x/c)Jt +
(1/c)aE+ /0t, neglecting the second-order temporal derivatives of the field envelgpes
and harmonic generation, and separating frequency components, one obtains three cc
Schiodinger-like equations,

(2 1 47€? (ng—n Z2n,
,(wo) aO+V2ao+ ot <o s Z )

ot c?

4 e? 1
= mec > (NeFa1 + Ngpay) — szgo,
[ 2w_1\ 0a_1 2 1 4 e? N_1 — Nes Zizni
i —— +Vea1+ =Vyx_ - a
( c? ) ot + 1+c2 X-1t c? Me zl: m !
(%)
_ A e? o 1 ve
T 2mec? eFd0 = 5 VL
i 2a)1 8a1+v2a+ lv +47'[62 N1 — Nes Zzizni a
9t i X1 2 e m, il
A e?

1
= Imec? Nerd0 — 55 Véi,

with 47 €°nm/Me = @2, M= —1, 0, 1. The scalargny, andé, are defined such th& - a,, =0
and are as follows:

n Zn
szmz47[ezam-v< es+z ')

) 4 €? .
Vo = o (@1-VNep+a1-VNngp),
) (6)
2 A7 €? .
V= eF>
e
A e?

Vzijl =
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It is noted that in the 2D geometry considered in Section 6B (and in 1D) the sgalars
andép, can be taken to be zero. The temporal envelgpesndn g are computed as follows:

- 1 on
Ner A €“pat [—. —2 4+ (Ne— neS):| ,
lwpen ot
(7)
1 99

pr ~ &t [—. — + (@ - ¢s)] :
lwpen ot
Equations (7) are the result of simple manipulation of Egs. (1) where higher-order |
monics have been neglected, and the assumption of the slow temporal variatipaiod
Ner ON the time scale of2/wpe is explicitly invoked. Closure of the model is obtainec
with the following equations,

¢ F— f(y,n
%S—Weczam'am_ (¥, Nes)

2

— = \Y — ¢ a,+aj-a =a(t (8)
m epr Wecz(aO' i+t ag-ay) || =a),
Te()'n(?f;) if y=1
f(% nes) = (9)

To(;27) (2) 7 iy #£1

Neo

wherew is a constant of spatial integration and is therefore only a functian of our
model,« is chosen such that global charge neutrality is ensured; i.e.,

/ Vs - do = 0. (10)

Here,ng and Te are the initial electron density and temperature dada surface area
element. A detailed derivation of the closure equations, Egs. (8), (9), is tedious and
been deferred to Appendix A in order to improve the readibility of the paper. Equations (
(9), which allow the decompositions of the electron density and electrostatic potential
their respective low-frequency and high-frequency components, are critical steps ir
RPIC model. Without Egs. (7)—(9), the concept of temporal envelope representation o
electromagnetic waves cannot be applied toward PIC modeling of parametric instabili
In summary, Eqgs. (2)—(10) constitute our physical model. Equations (3)—(10) are so
self-consistently to obtain the vector and scalar potentials, and Eqgs. (2) are used to ad
the electrons and ions in phase-space in response to the presence of these forces.

3. CONSERVATION LAWS

The model presented in Section 2 obeys certain conservation laws which are not imn
ately obvious. Here, three conservation laws can be derived from the model: (1) conserv
of the number of photons, (2) conservation of energy, and (3) conservation of momen
Conservation of charge is trivially satisfied and will not be derived. It is noted here t
it is important that the model conserves momentum because momentum imparted o
particles by the light waves, over a sufficiently long time, can affect plasma hydrodyna
motion and the evolution of parametric instabilities [35].
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The conservation laws can be derived from our model, Egs. (2)—(10), using the stan
approach in classical electrodynamics, and the results are as follows,

( > /7 do =0 (11)
d
a(EKL +Exr+Ep+E1+Eo+ E_1)
+/(FKL+FKT+F¢+F1+FO+F—1)'d0'=0 (12)
d
a(PK+P)+/dU~(I‘K+I‘)=O (13)

where the various momenta, energies, and fluxes are defined as follows:

€ = iwodo/C,
e = iway/cC,
e.1=lw_j1a1/C,
bh=Vxan,, m=-10,1,
2
Em= [Eml” d®x, m=-1,0,1,
87
Fo= v v 4L ! =
O:lﬁn([ ] - e+ [Vag] - € Xo+ 50 90+ X0+2§0 )
Fi= v v 1 L =
l:lﬁn([ al e+ [Va] €+ - [x1 + 51 e+ — X1+2§1 )
1
F,1= ([Va 1] e1+[V&1] el-‘r |:X 1+ S :|
1 17,
+ 2 |:Xl + 551} el),
_1 2, 1o o)
Ey = 8ﬂ/(|v¢sl + 2|V¢F| )d X
d
Fs = —(pnele) + Z%szi Ny — (¢s ﬁ + Iwpeo[¢|:V<l5|: - ¢FV¢>F])
EKLE<Z mp|up|® +ZZ p|up|2>,
pee i pei
Fuo = Z Mp U] upa(x—xp)+zz p|up|2upa(x—xp)>,

pee

i pei

1 47Te2nes
Exkt =
KT / 16wc2< Me +

Z dnezin ) am - af, dx,
m;
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1 A7 e®ne 47'[eZZ n;
Fvi= — U e—l(m Dwpeot IU-
KT 167TC2< Me odm - & 167102 Z "
Py = <Z MpUp+ > > mpup> ,
pee i pei

Ik = <Z MpUpURS (X — Xp) + > Mpliplipd (X — xp)> ,

pee i pei

P

/E(em X b>‘< +e;‘.<n Xbm)dsx,

r

6W<{bm,b:;}+{em,e;;}—[vam]a;; [V x b Jam
1 A 1

—?[am (Xm+ §§m> + a, (Xm+ Efm)])

1
E{V‘PF» Vel

+ Si{Wbs, Vst +
T

The densitiese andn; are given by Egs. (3NeiUei = Zpee,i Upd (X —Xp), {-) denotes
temporal averaging over the electron plasma times¢alé} = (a- b)l — ab — ba, andl is
the unit dyaddo is a surface area element. Equations (11), (12), and (13) are conserve
laws for the number of photons (if both sides of (11) are dividediytotal energy, and
total momentum, respectively. It is noted that in writing Eqgs. (11)—(13), one has assu
[dNes/0t] K [dN/dt], |0Ner/0t| K wpeo|Ner|, and|dam/dt| K wpenl@m|. These assumptions
are, of course, consistent with the validity of the envelope representation on which RP!
based.

4. NUMERICAL NOISE

A detailed analysis of the density and electrostatic potential fluctuations for RPIC cal
found in Appendix B. In particular, temporal mean-square noise spectra for the quamtitie
Ne, Nes, Nek, Yes, aNdper are derived analytically by solving the linearized Vlasov equatiol
(see Egs. (B.2) and (B.3)), taking into account the facts that the computational mesh is
crete and that the particles have a finite spatial extent. These derived temporal mean-s
noise spectra are then compared to simulation results. The results are important be
in the aforementioned work of Sanbonmatsal. [34] where quantitative comparisons of
ASPEN simulations with quasilinear Zakharov simulations were made, one must be
to characterize PIC noise spectra so that these spectra can be imposed as noise ¢
in the Zakharov simulations. Furthermore, because the linear growth phase of paran
instabilities is sensitive to the noise spectrum, it is imperative that the noise spectrur
known.

Figure 1 is a comparison between Egs. (B.2) and (B.3) and 1D numerical simulatior
which the external electromagnetic field is absent and indicate excellent agreement bet
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PIC Simulation
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FIG. 1. Temporal mean-square high-frequency electron density spectrumbwithpe =4260,6X/Ape =
0.13,T;/Te=0.1, m;/m, = 1836. Both electrons and ions are represented by four finite-size particles per con
tational cell.

theory and simulations. The spectra obtained from the simulation are averaged o\
period of 2500 plasma period. Two-dimensional simulations (not shown) are also in g
agreement with Egs. (B.2) and (B.3).

5. NUMERICAL ALGORITHM

Atemporal discretization scheme and its accompanying nonlinear numerical analysi
presented in which the numerical solutions are shown to be stable, provideg,tbiak 1
and that the Courant condition for the electrons is satisfied. The iterative procedure
solving the time-discrete equations is discussed. Two-dimensional spatial discretizatic
the equations and parallelization-related issues, such as domain decomposition, will
be discussed.

Each particle carries a chargg, positionx,, and velocity . Associated with each
particle is an interpolation functioB(x — x,,) that determines how the particle charges ar
interpolated onto the computational mesh, as indicated in Egs. (3). In our two-dim
sional Cartesian implementation of Egs. (2)—-(18}x) is chosen to be a biquadratic
B-spline.

A. Temporal Discretization

Using the leapfrog algorithm in which the pair of variablgsandu, are advanced
alternately in time, the particle equations of motion, Egs.(2), are approximated
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n+1/2 —1/2

Qp ™ (M, g+ i (M-t ™
—_Py opat ™ )
¢ 4m c2am &

ot mp
(N+1) _ ()
Xpe = Xpe _ 4172
st pe 7
(14)
(n+1/2) (n 1/2) q
Uy, Upi —_ Py (ﬂ) WP
st mp (¢ 4m c2am &m )
XD _
Xpi pi _ ,(+1/2)
— =uy 7.
st P

The superscripts denote the time level at which the physical variables are evaluated
t™ = nst.

The electron and ion number densities are obtained by evaluating Egs. (3) at dis
mesh points:

—en" (%) = Y gpS(x — x{).

pee

eZn(0) =Y gpS(x —x).

pei

(15)

The scalar potentialg™ andqs(sn) are obtained by evaluating Eqgs. (4) at discrete tim
levels:

V2™ = 4ne<né”) — Z Z ni(n)> ;
i

(16)
1 _ _
éV2(¢>g‘) +¢IY) = 4ne<n(” ¥y _ Z zn® +n" D]) )
i

The Schodinger equations, Egs. (5), are discretized using the Crank—Nicholson me
[31-33],

(2w &)’ —af" 29012 -1z | A€ (—1/2)\ A(N—1/2)
i(— ) 2——+vV V + —(no—n
( c2 ) st % 0 mQCZ( 0= Nes )2
+ivx<n—1/2> 2n € L2012 2n€ Ri-Y/2 40-12)
c? MeC2 Ner - MeC2 Ner
200\ aN—a%"Y o aun 1y, 4T€ (-1/2)) (0-172)
| — — +V a_ + —V _ + —— (N1 — n a_
( c? ) st ! 2 ¥ o1 MeC? 3 (N1 )&
& (7)
1 2
(n-1/2) _ #(N—1/2) _(n— 1/2)
tzVra mec? Ner "8
(201 A — &Y 23, (-1/2 4r (-1/2)\ (N—1/2)
()32 v V =~ (ng—n a
( c2 ) St 3) c2 ( 1 eS ) 1

1o m1z _ 21€ (17250172
- Vi1 oc2 Ner ™ 3
e
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(n=1/2) (n) (n-1)

whereal~%/2 = (@ + a"~b) /2 andngg 7 = (Ngs + Ngs )/2. Itis noted that with very
little loss of accuracy, terms of ordme/ m; have been neglecteds, %indém are defined as
follows:

47'[62 1/2
v2, (=12 (n-1/2) Vn(n / )
Xm e am

sz(gn_l/Z) = 47Te2( (n—-1/2) vn(n 1/2) +a(n 1/2) Vn>k(n 1/2))

Me
2 (18)
_ 4 _ w(N—
Vz’g“fnl 12 _ 7 aé)n 1/2) Vne(Fn 1/2)’
e
4re?
v2e(-1/2) (12 g1/,
& e a
Closure is obtained by evaluating Egs. (7)—(10)&tY/2:
n _ 4(n=1) n) (n—1) (n) (n—1)
¢(n 12) _ dopet ™2 ¢ ¢ n oV + ¢ _ 9¢s +¢s
(19)
N2 _ dopet ™2 _n{» —n{™b + n{®+nl R(=1/2)
eF ia)peoét 2 eS ’
epd + epl (n-1/2) _
ot e () e (@ A A )
1 n-1/2) _ () | g+ 4 =1 (1)
N — a . a
4mew%eo‘ <e¢ 4mec? 2 1t -1
2
a® el 4™ g™ 1)}) =™ 12, (20)
=172 .
Teo In(%) ify=1
(n-1/2)
f(y Nes ) n-y2N =1 ’ (21)
To(4) (") iy #1

(n) (n—1)
/ ("52"5> do = 0. (22)

Equations (14)—(22) represent the time-discrete form of our RPIC model. At tirié&,
when the quantitieal >, ™Y, ¢, n0-Y, n™Y and particle velocitiea{" /2 and
p03|t|ons><(”) are known, Egs. (15) are evaluated in order to interpolate partlcle data onta
computatlonal mesh to yiel” andn(”) Equations (16)—(22) are solved self-consistentl
fora®, ¢™, ¢ nls™?, andnli */?. Equations (14) are then advanced in order to obta
the time-advanced velocmex%‘*l/z) and positionsc+?,

The leapfrog algorithm, Egs. (14), is well known and has been shown in past litera
to be numerically stable. We will therefore focus our attention on the nonlinear stabi
analysis of the coupled Sdadihger equations, Egs. (17). Following the approach outline
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by Vu [31], Egs. (17) can be recast as a time-discrete conservation law,

(2o (- e ) + 9 - <o

F-1/2) = [va1/2] . gi=1/2 _ [yaxn1/2] . o012

1 _ 1 .. (e 1/ .o 1. _
+_2 Xrgr? 1/2) + _Ergnn 1/2) am(n 1/2) = Xm(n 1/2) 4 _ém(n 1/2) ar(rq 1/2)’
c 2 C 2
where, as a reminder for the readers, the repeated mdexo be summed over. The above
equation can be integrated over the volume of the simulation:

(2
|(C20:;1) </|ar(1?)|2dgx— /|af(rr1'1)|2d3x) +/d0 CEM-12 _ o

Itis noted here that the above equation is the time-discrete version of Eq. (11). When ba
ary conditions are such that there is no net #if /2 crossing the simulation domain’s
boundary, the above equation reduces to the well-known Manley—Rowe relation [36]:

©m /’a,(ﬂ)\z d®x = constant

Since each term of the left-hand side is positive-definite, the total energies containe
the incident and scattered waves are rigorously bounded, regardless of the tinie ste
Therefore, Egs. (17) are unconditionally stable.

B. Spatial Discretization

Consider a computational domain consisting of a rectangle withk& Ly and 0<
y < Ly. The computational mesh is staggered and consists,of-( x (Ny — 1) rectan-
gular cells of equal size,, the physical coordinate of the vertices of the computation cel
andxg,, the physical coordinate of the centers of the computational cells, are specifie
follows,

X = (K—1)éx& + (I — 1)dyey,

X =X + %Xéx + %yéyv
wheresx = Ly/(Ny — 1) anddy = Ly/(Ny — 1). Here,k andl are indices labeling the
computational cells. It is noted here that this is the same geometry as that of an e:
Cartesian two-dimensional hybrid code [31].

The electron densitye, density enveloperes and nefr, ion densityn;, scalar poten-
tial ¢, scalar potential envelopés; and¢r, and electromagnetic field envelopgs with
m=—1,0, 1, are cell-centered quantities.

Equations (14), the time-discrete representation of our particle model, are spatially
cretized by replacing the operatarwith the following numerical approximation,

(VA () ~ {A(XEI) +A(XE ) _2? X(xﬁ,l,) —AGE 4_1) } .

Alxg) +AXE ) —AMG_) AR u-1)],
" { 25y }ey’ (23)
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where AXE)) is any cell-centered variable, e.g., the electrostatic poteptial It is clear
from Egs. (14) and (23) that when the scalar and vector potentials are cell-centered, as
case here, the electric fields are vertex-centered. These vertex-centered electric fiel
interpolated onto particle positions via bilinear B-spline of compact support [31]. These
terpolated electric fields are subsequently used in Egs. (14) to advance the particle pos
and velocities in time.

Equations (15)—(22), the time-discrete representation of our field model, are spat
discretized by replacing the operatétsind V2 with the following second-order numerical
approximations:

A(XE — A(XE_ R A(xC ZAKE )T
[VA] (xﬁ,) ~ ( k+l|)25x ( k 1')]ex+ { ( k|+1)25y ( Kl 1) 3,
(24)
A(ia) — 2A06) +A(E 1) | AlK) — 2A06) +A ()
@xy” 3y)? |

Itis noted parenthetically that since no spatial enveloping is employed in the RPIC ma
the grid resolution requirement for RPIC is the same as that of standard explicit PIC cc
i.e., the spatial grid size has to resolve the shortest wavelength of interest.

[V2A] (<) ~

C. Domain Decomposition

The laser is taken to propagate primarily in #adirection, and this choice necessitates th
use of many more computation cells in thelirection than in the/-direction. Henceforth,
they-direction shall always taken to be periodic to facilitate the use of fast Fourier transfo
(FFT) in solving field equations (see Section D). A one-dimensional parallel decomposi
inthey direction has been applied to the two-dimensional computational mesh, as illustr.
in Fig. 2 where, as a specific example, the computational mesh consists ef 128
cells in thex—y (k<) plane and 16 processors are used. The computational volume
partitioned intoNp, equal subdomains wheig, is the number of processors, and eac
subdomain is assigned to a processor and is henceforth referred to as that processor’s |
computational volume. In Fig. 2, the thin solid lines denote the boundaries between adje
computational cells, and the thick solid lines denote the boundaries between the proce:
private computational volumes. No parallel decomposition is performed ix-thiection,
and each processor holds field data and interpolated density data on cell centers in
to the processor’s private computational volume. In addition, each processor also cari
single layer of ghost cells immediately surrounding its private computational volume
illustrated by the dotted lines in Fig. 2b.

The particles are initially loaded into the processors and are subsequently reassi
among the processors (through the use of interprocessor communications) as the par
positions evolve, in such a manner which ensures that each particle’s position is interi
the private computational volume of the processor to which it is assigned.

D. Parallel Algorithms for Solving Field Equations

The spatially discretized versions of Eqgs. (15)—(22) are solved by means of a split
algorithm where the equations are first linearized, and the resulting linearized equat
are then solved within a triple-nested modified Newton—Raphson iteration which, u
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FIG. 2. The one-dimensional decomposition of the two-dimensional volume is illustrated. As a spec
example, the computational mesh consists of ¥2B28 cells and 16 processors are used. The thin solid line
denote boundaries between adjacent computational cells, and the thick solid lines denote boundaries b
the processors’ private computational volumes. Each processor carries a single layer of ghost cells immec
surrounding its private computational volume, as illustrated by the dotted lines.

convergence, yields self-consistent solutions to the original nonlinearly coupled equat
Egs. (15)—(22). For a more detailed discussion of the splitting algorithm just described
Ref. [31-33].

The linearized Poisson equation fqbg” is solved by means of a standard conjugat
gradient algorithm with no preconditioning. This method isimplemented to run concurrel
on all available processors. A more detailed discussion can be found in a previous \
[33].
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The Poisson equation fer™ is solved by either 2D FFT or a combination of 1D FFT
in the y-direction and tridiagonal matrix solves in thedirection, depending on boundary
conditions. For example, if the scalar potengié! is taken to be 0 at =0 andx = L, the
Poisson equation can be solved using real-valued FFT iy-flieection and sine FFT in
the x-direction. In this case, th&? operator is transformed to Fourier space symbolicall
as follows:

v Z[Sin(krax/Z)r_ 2[:~~,in(ks<3y/2)}2

ki dx/2 ksdy/2
.
k = =, r=01...,Ny—2,
X
2rs
ke = 2 s=0,1...,Ny—2
Ly

The sine FFT in the direction can be performed concurrently on all available processc
and no interprocessor communication is required. Although the real-valued FFT in
y-direction does require interprocessor communication, it has been implemented to
advantage of any concurrency allowed during the course of an FFT. In particular, assul
that the number of processoly, is a power of 2, the number of times interprocessc
communication is required is only 2 lodly, per FFT in they-direction. It is found that
this is not a significant overhead, as will be shown in Section 6C.

The linearized Scludinger equations are solved using the pseudo-spectral method wi
employs complex 1D FFT in the-direction (the field envelopes are complex-valued) ar
1D tridiagonal solves in the&-direction. Here, thev and V2 operators can be written
symbolically as follows:

in(ksdy/2
Vg L ik, | YD
X ksdy/2
vz, R sin(ks8y/2) 1
G ks8y/2 '
The nonlinear interaction terms in the Setiiriger equations, e.gnls 7?al" "2, are

treated iteratively as known source terms and are computed in configuration space in:
to avoid convolutions in Fourier space. The tridiagonal solves inxtldirection can be
performed concurrently on all available processors, and no interprocessor communic
is required.

The macroparticles are scattered evenly across the processors initially. For simulatic
which the external electromagnetic field is moderate or weak, the density perturbation:
small (dne/Neo| < 1 and|dn; /njp| « 1). As aresult, the particles do not tend to be spatiall
bunched, and load balance is well maintained throughout the simulation.

E. Filtering of Electromagnetic Wave Envelopes

The pseudo-spectral method for solving the field equations requires thatihection
is taken to be periodic. Consequently the electromagnetic waves could recycle in
direction. As a result, SRS and SBS may be amplified preferentially irytiieection
since the effective gain region in that direction is essentially infinite. In order to suppr
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nonphysical wave recycling, the following filtering scheme is applied to the electromagn
wave envelopes at each and every computational cycle:

if ky/kol < 2/F,
ho(ky) =
oky) {O otherwise

hy(ky) = { if |ky/ka| < Ly/Ly,
Y770 otherwise

h_y(k,) = { if |ky/k—1| < Ly/Ly,
Y710 otherwise

5\ 12
o @pen
ko= — -5 )

wo

®o @ e 1/2

k4= (1—2”) )
Cc wo

Here,F is the f /number of the focusing optics. The electromagnetic wave envelgpas
anda_; are filtered usingy, hy, andh_1, respectively. In all of our simulations, itis observec
thatthe electromagnetic wave spectra are not artificially cut off by the filters presented ak
i.e., theimportant nonzero contributions of the wave spectra are far removed from the ct
Consequently, the filters do notintroduce adverse numerical effects on the simulation re:
Furthermore, it is noted that in all of our simulations, the ratjgL, (the aspect ratio of
the simulation domain) is always chosen to be sufficiently large such that the simula
results are not required to stay within the paraxial limit.

6. RESULTS AND DISCUSSION

The code has been tested in both one and two dimensions. A timing study has
performed, and the results indicate that our code has a high degree of parallel effici
Details of this timing study will be presented below, along with results of a two-dimensio
test simulation of coexisting SBS, SRS, and LDI.

A. Numerical Dissipation

Two of the most prominent types of numerical dissipation will be discussed: (1) electr
ion thermal equilibration and (2) electron heating. Electron—ion thermal equilibration ari
from long-range Coulomb collisions between electrons and ions and acts to bring e
trons and ions to thermal equilibrium in an energy-conserving manner. While the ene
conserving aspect of this interaction is reflected in the standard explicit PIC algorithm,
equilibration time (due to numerical collisions) is much too short compared to proper pt
ical values. RPIC corrects this deficiency by eliminating the high-frequency response ir
ions and thereby eliminating numerical collisions that give rise to electron—ion thermal e
libration. As an illustration, one-dimensional simulations are performed Witfi; = 30
using the standard explicit PIC algorithm and ASPEN, and the time histories of the
and electron temperatures are shown in Fig. 3. In both types of simulatigg$,= /10,
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FIG. 3. Time histories of the electron and ion temperatures for periodic, undriven simulations using stan
explicit PIC and ASPEN are shown. In both types of simulatiengt =7/10, X/Ape =1, Ly/Ape = 1024,
Te/T; =30, m;/me = 1836, and electrons and ions are both represented by 64 macroparticles per computat
cell. While there is significant transfer of energy from electrons to ions in the standard PIC method, there is a
absence of energy transfer in ASPEN.
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FIG. 3—Continued

8X/Ape=1, Lx/Ape=1024,T,/T; =30, m;/me = 1836, and electrons and ions are botl
represented by 64 macroparticles per computational cell. The system is undriven witt
riodic boundary conditions. It is evident that while there is significant energy transfer fr
electrons to ions with the standard explicit PIC algorithm, there is a total absence of en
transfer with ASPEN.
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Numerical dissipation due to finite-grid (aliasing) effects manifests itself in the heat
of the electron distribution function even in simulations where there is no external driv
field. Such numerical dissipation is nonphysical, does not conserve energy, and is cor
to both standard explicit PIC and RPIC. The curréfit, ) and the electric fieldE (k, w)
can be expressed via the phenomenological relai(kmw) :vé(k, w), Wherev is the
electron numerical collision rate. The rate of electron heating is given by Ohmic heatir

d ) ERP\
dt(/neTedx>_u/< = >d K, (25)

where(|E(k)[?) is given in Egs. (B.2). As an example, consider the simulations presen
in Fig. 3. The rate of electron heating in ASPEN, measured from Fig. 3d, is used in ¢
junction with Egs. (25) and (B.2) to calculate the electron numerical collisionyatgy ~
2.4 x 10~4. The dependence ofon various parameters, e.6x/Ape, and various interpo-
lation schemes has been examined in detail by Hockney [37]. In quantitative compari
of RPIC and quasilinear Zakharov simulations [34], it is important to include the
dissipation of Langmuir waves in addition to electron Landau damping because at |
wavelengths where electron Landau damping is essentially nonexistent, numerical dis
tion is dominant. In the specific example given in Fig. 3, numerical dissipation doming
over electron Landau damping fkkpe < .213.

B. Two-Dimensional Simulation of SBS, SRS, and LDI

The simulation is performed in a rectangular simulation box Wigk= 12 um andLy =
25 um. The boundary conditions are periodic in thelirection, and aperiodic in the
x-direction. The electromagnetic pump wave enters the simulation domais-&t and
leaves the simulation domain gt= L. The corresponding boundary conditions for the
scalar and vector potentials are

0, y,t) = ¢(Lx, y,t) =0,
#s(0,y,t) = ¢s(Lx, ¥, 1) =0,
& - Vao(0, y, 1) = iko(2ain(y) — a(0, y, 1)),
& Vao(Lx. y. 1) = ikoao(Lx. y. 1),
& Vai(0,y,t) = —ikia (0, y, 1),
& - Vai(Lyx, y,t) = ikia(Ly, y, 1),
& - Va1(0,y,t) = —ik_1a1(0, y, 1),
& Va i(Lyx, y,t) =ikja1(Lyx, Yy, 1).

Here,an(y) is a specified function and corresponds to the incident electromagnetic w
atx =0. ay, is related to the incident laser intensitgs follows:

o= (&
lain(y)I* = <ng)“3’"
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For the particular simulation under consideratiap,is specified as follows:

8rlp\Y? [ 2f 1 Ly\?

= () (iom) ¥ 2z~ 3) |
i= () (&)

ko 4ko
Here, | is the diffraction-limited intensity of the laser and is taken to B&610 W/cn?.
wo, the frequency of the incident laser, is taken to [®¥5 10'° Hz and corresponds to a
frequency-tripled Nd—glass laser with vacuum wavelengta 0.351 um. The f /number
of the focusing optics, defined to be the ratio of the focal length of the optical lens
its diameter, is taken to be 4.0. It is noted here that with the above boundary condit
for an, (m=—-1, 0, 1), electromagnetic noise is not injected into the simulation domal
Consequently, parametric instabilities such as SBS and SRS develop from noise il
electron and ion density. Itis noted here that the electromagnetic field is taken to be pola
in thez-direction (the ignorable coordinate), apg and&,, can therefore be set identically

to 0 at all times.
Initially, the plasma is spatially uniform and stationary and the initial conditiomfas

(x 0)—(8”]0)1/2(2]c )ex L < Ly>2
D06V = et ko) TP Ta0200\V T 2 ) |

o?(x) = (£>2 +i (—X - LX/Z)
ko do )’

al(X7 Y, O) = 0»
ai(x,y,0=0.

The plasma consists of protons and electrons withne =8.9 x 107%cm3, To=1.6 keV,
andT; =0.1 keV. The ratio of specific heats is taken to be 1. The simulation box has
4096x 256 (1 million) computational cells, each particle species is represented by
particles per computational cell (a total of 128 million particles), and the time step is take
be wpedt = 7/10. For this particular simulation, SBS, SRS, and LDI are observed to oc
simultaneously. The simulation consists of 36,000 computational cycles and corresp
to a physical time of 7 ps.

Figure 4 shows the time histories of the SBS and SRS reflectivities. While SRS
saturated, SBS is still undergoing exponential growth. Figure 5 is a color-coded con
plot of the time-averaged 2{-k,) LW spectrum, accompanied by tkg-averaged LW
spectrum. The LW spectrum is seen to consist of two LWs whose locatidaspace are
predicted accurately by wave-matching conditions. First, linear wave-matching conditi
for SRS require that

2 \ 2 1/2
Uth i @ w
= () ()| (%) < (-2m))
Wped Wy wo
wherek w; is the wavenumber of the LWs generated by SRS. For the simulation under
cussionk wiApe ~ 0.277. This SRS-generated LW undergoes the LDI parametric proc
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FIG. 4. Time histories of the SBS and SRS reflectivities for a two-dimensional simulation are shown.
laser is Gaussian diffraction-limited with/4, 1, =6.7 x 10**W/cm?, and, = 0.351m. The plasma consists
of protons and electrons with =n,=8.9 x 10?° cm™3, T,=1.6keV, andT, =0.1keV. The ratio of specific
heatsy is taken to be 1. The simulation box has 469856 (1 million) computational cells, and each particle
species is represented by 64 particles per computational cell (a total of 128 million particles). For this simuls
wpedt =1/10.

in which it decays into another LW and an IAW whose wavenumbers are given by lin
wave-matching conditions,

2( Cs
KiwzApe = —Kiwirpe + 3 <—>,
Uthe

Kiaw2Ape = KiwiApe — KiwaApe,

wherecs anduy,e are the ion acoustic and electron thermal speeds, respectively.ddere
is computed from the kinetic linear dispersion relation for IAWs tabe ~ 2.63 x 1073,
For the simulation under discussidy2ipe ~ —0.246 andkjaw2Ape & 0.523. Figure 6
is a color-coded contour plot of the time-averaged RBK,) IAW spectrum, accompa-
nied by theky-averaged IAW spectrum. The IAW spectrum is seen to consist of (a) t
SBS-generated IAW and its second and third harmonics, (b) the LDI-generated 1AV
kiaw2 = 0.523, (c) the beat waves resulting from the interaction between the SBS-gener
IAW and the LDI-generated IAW, and (d) the density profile modification due to the pc
deromotive force. Linear wave-matching conditions require that the SBS-generated |

be located at
a)z 1/2
KiawsApe = 2<Uthe> <a)o> [ ( - p§O> - CS]

For the simulation under consideratidyyzApe ~ 0.337. The second and third harmonics
of this SBS-generated IAW must then be locatekl g4 Ape ~ 0.674 andkjaws Ape ~ 1.01.
The pair of IAWs which result from the beating between the SBS-generated and L
generated IAWSs akiaws andkawz are expected to be located latw7Ape ~ 0.860 and
kIAWQ)\De% 0.186.

Figure 7 is a color-coded contour plot of the 2BY) ion-density perturbation, accompa-
nied by thex-averaged ang-averaged ion-density perturbation. Figure 7 indicates a dens
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TABLE la
No. of processors Grid size CPU seconds Speed up

2 4096x 256 1183
4 4096x 256 642.4 1.84
8 4096x 256 339.7 1.89

16 4096x 256 158.7 2.14

32 4096x 256 78.86 2.01

64 4096x 256 38.88 2.03

perturbation of about 4% due to the ponderomotive force. The short-wavelength del
perturbations in thg-averaged ion density are primarily due to SBS. Figure 8 is the distrik
tion of electrons leaving (a) the left boundary and (b) the right boundary. These distribut
indicate the asymmetric development of hot electron tails, which is consistent with the
that the primary LW (due to SRS) is stronger than the secondary LW (due to LDI).

It is noted here that even in a single laser hot spot such as the one shown in this se:
an abundance of parametric instabilities whose daughter waves exist on highly disp
time scales can coexist and interact in a complex manner. The interaction between
instabilities and the role of nonlinear and quasilinear kinetic effects on these instabil
are not well understood. We plan to use ASPEN to address these issues, and the resul
be reported in a future publication.

C. Timing Studies

The parallel efficiency of our code ASPEN depends primarily on two sets of operatic
(1) the FFT algorithm, which is used extensively to solve for the field envelopes as discu
previously, and (2) the particle pusher and interpolation algorithm. As a result, two set
timing studies were performed in order to assess the parallel efficiency of the FFT ant
overall parallel efficiency of ASPEN. The results to be presented below are particuls
the Los Alamos ASCI computer, which consists of Silicon Graphics’ 250 MHz R100
processors.

A computational mesh of 4096256 is employed in our test of the FFT algorithm
Here, 500 complex-valued 2D FFTs are performed, and the CPU time required to dc
task is recorded as a function of number of processors and is shown in Table la.
average speedun wherex® = CPU time required by 64 processors/CPU time require
by 2 processors, is calculated from Table la to be 1.98, indicating that the FFT algori
performs with near-perfect parallel efficiency in this regime. Next, a similar testis perforn
with a computational mesh of 409664, and the results are summarized in Table Ib. Tt
average speedup is calculated from Table Ib to be 1.80.

TABLE Ib
No. of processors Grid size CPU seconds Speed up
2 4096x 64 186.
4 4096x 64 98.2 1.89
8 4096x 64 50.4 1.95
16 4096x 64 275 1.83
32 4096x 64 17.4 1.58

64 4096x 64 9.73 1.79
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FIG.5. Color-coded contour plots of the Langmuir wave energy spectrum corresponding to the case desc
in Fig. 4. The spectrum has been averaged over the entire duration of the simulgtigh=¢ 1.13 x 10, cor-
responding to a physical time of 7 ps). For clarity, only a small part of th&Pace is shown. The top panel
is thek,-averaged Langmuir wave spectrum. The primary Langmuir wave is driven by SRS, and the secor
Langmuir wave is, in turn, driven by the primary Langmuir wave.
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FIG. 6. Color-coded contour plots of the ion acoustic wave energy spectrum corresponding to the cas
scribed in Fig. 4. The spectrum has been averaged over the entire duration of the simulaiibr=(1.13 x 10¢,
corresponding to a physical time of 7ps). For clarity, only a small part of thk-2Bace is shown. The top panel
is thek,-averaged ion acoustic wave spectrum. The SBS-generated ion acoustic wave and its second and thi
monics and the LDI-generated ion acoustic wave are seen to coexist and interact via nonlinear beating of the \
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FIG. 7. Color-coded contour plots of the ion density perturbation corresponding to the case describe

Fig. 4. The ion density perturbation shown here is a snapshgtstt= 1.13x 10*. Also shown are thg-averaged

andy-averaged ion density perturbations. The ion density perturbation due to the ponderomotive force is :

4%, and the ion density perturbation due to SBS and LDl is about 2%.

Second, in order to assess the overall parallel efficiency of ASPEN, a test simulz

is performed in which the computational mesh consists of 20286 cells and the ion

and electrons are represented by a total of 256 particles/cell. The simulation is perfor
and the CPU time required to execute 10 time cycles is recorded and is summarize
Table Il. The average speedup, defined previously, is computed from Table Il to be 1.91
indicates that overall, ASPEN has a high degree of parallel efficiency. In fact, this typ
performance is similar to that reported for HERCULES [32], a three-dimensional massi
parallel hybrid PIC code designed specifically for low-frequency parametric interaction
laser-produced plasmas, in which a speedup factor of 1.9 was obtained for a CRAY

with 512 processors.

TABLE Il
No. of processors Grid size No. of particles/cell CPU seconds Speed up
2 1024x 256 256 640
4 1024x 256 256 320 2.00
8 1024x 256 256 158 2.02
16 1024x 256 256 81.2 1.95
32 1024x 256 256 45.0 1.81

64 1024x 256 256 25.0 1.80
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FIG. 8. Contour plots of the electron distribution function corresponding to the case described in Fig
(a) electrons that leave the boundary locate atL, (electrons that move in the direction of the primary
Langmuir wave), and (b) electrons that leave the boundary located 8t(electrons that move in the direction of

the secondary Langmuir wave). The asymmetry in the hot electron tails is due to the fact that the primary Lanc
wave is stronger than the secondary Langmuir wave.

7. SUMMARY AND CONCLUSIONS

In this report, a massively parallel two-dimensional RPIC code, implemented on the
Alamos ASCI parallel computer, appropriate for modeling parametric instabilities in las
produced plasmas with both low-frequency and high-frequency daughter waves is prese
The physics model contained therein is an extension of an earlier model in which only |
frequency parametric instabilities are treated [33]. The RPIC model consists of three cou
nonlinear Schodinger-like equations for the vector potentials, Poisson equations for
scalar potentials, an exactly integrable electron momentum equation, and the equatic
motion for the finite-size electron and ion particles. The 8dmger equations are solved
using the standard pseudo-spectral method. The Poisson equation for the instanta
electrostatic potential is solved using a combination of tridiagonal matrix solver and F
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The low-frequency electrostatic potential is solved using the standard conjugate gra
algorithm without preconditioning.

Temporal mean-square noise spectra have been calculated analytically and compare
simulation results. The availability of these noise spectra facilitate quantitative compari:
between the RPIC model and the Zakharov model augmented with quasilinear evoll
of the spatially averaged electron distribution function [34]. Two-dimensional simulatic
of SRS, SBS, and LDI and the interaction of these instabilities have been performed,
the results of one such simulation was presented. The results show a complex intere
between these instabilities, which occur on very disparate time scales. We plan to u
ASPEN to study the interaction between these instabilities, a subject of intense intere
the ICF community at present.

In our test simulations for which there are 64 particles/species/cell, it was found |
with 128 processors, the code requires about p@@article/time step. The timing results
indicate that code has a high degree of efficiency, evidenced by the fact that the CPU
required is reduced by a factor of about 1.9 on average whenever the number of proce
is doubled.

APPENDIX A

Derivation of Electron Equation of State

Summing Egs. (2) over the electron distribution, one obtains the following electron fl
equation,

. 1
V . *e—l(m—|)wpa)t _ _v
4mec? (om -2 ) o Pe

3Ue
Me( ~° +Ue- VUe | = eV -

1 . .
Ue ~ UeS+ é(U(_:‘Feflwpeﬁ + UZFelwpmt)7

whereU, and pe are the longitudinal electron fluid velocity (defined in Section 3) ar
electron pressure, respectively. The high-frequency and low-frequency parts of Egs. (
describe the electron response due to ion acoustic and Langmuir waves, respectively
glecting the small contributions of both the electron pressure and the advection term,
assumingaUer/0t] < wpe|Uer|, Uer is obtained from the high-frequency component o
Egs. (A.1):

V(eqbp ~ oz @ a,+ag- al)). (A.2)

Substituting Eq. (A.2) into Egs. (A.1) and neglecting the low-frequency electron iner
the low-frequency component of Egs. (A.1) can be recast as follows:

1 2

2
AMewi g

e?
V’V{%F - m(aO'ail-Faé . al)]

1
— Vs — — VPes—
os Nes ' P25 ™ amec?

V(am - ap). (A.3)
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For moderate incident electromagnetic field intensities, the bulk electron distributiol
not expected to be perturbed significantly, and the low-frequency electron pressure ce
assumed to obey an adiabatic equation of state with an arbitrary ratio of specifigzhea
Following the approach outlined previously by Vu [31-33], Eqg. (A.3) can be integratec
obtain the electron equation of state, and the results are shown in Egs. (8) and (9).

APPENDIX B

Noise Spectra

In the absence of external fields, the linearized Vlasov equations for a two-compo
(electrons and ions) plasma described by Egs. (2)—(10) are as follows,

35fe

a
+u-Véfe —l—af

[m > apSX — Xp)s(u — upo)— qu(x)so( Xp) d°x H =0,

pee

st 9
— 4+ u-Véfi — —
T ' du

[ > S(x—xp>8(u—upo>— [/fﬁs(x)s(x — xp) d% H =

pei

Xp = Xpo + Upot,
V2 = dme(neg — Zniy),
Vips = 47Te<neo % — Znil)v

e

Ner(X, 1) = /Sfe(x, u, 1) du+ > dpS(x — Xp) + eneo,

pee

niy(x, t) = /8fi (x,u,t)d3u + Z OpS(X — Xp) — €Neo,
pei

whereS(x) is the particle interpolation function whose Fourier transfoné(ls), Neo is the
uniform background electron number density, afigandéf; are the perturbations from
straight-line particle orbits.

Because the time step of the simulation is usually small, g5t <« 1, the effects
of time discretization can be neglected. Also, because a staggered mesh is employe
Section 5), the operatofg andV? can be written symbolically as follows:

ik,
-k,
sin(kx8x/2) K sin(kydy/2) o
{ kxdX/2 } y[ kydy/2 ]y'

=
|||
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Solving the above equations fdf, ands f; in Fourier space, assuming Maxwellian electron
and ions of temperatuig andT,, respectively, and integrating the results over velocitie
one obtains

fer(k, @)  S(k) 1

= e kXm0s(w —k-u
Neo Ne 1+ xe(k,w)Z @ po)

pee

S(K) xe(k, @) 1+ je(k) kx|
N, e‘(k,w>1+xe(k,w>pze oot

Ni1(kK, o) _ é(k) 1+ )?e(k) Ze—ik'XPOS(O) — Kk - upg) (B 1)
. p 5 :

Nio o N; e_(k,a)) e

. ik 4rengS(k) 1 ik
Ek, w) = = NG 1+x€(k,w)ze P8 (w — K - Upo)

pee

ikdrenoSk) 1 14 xe(k) kX
- _ e 8 (w — K - Upp).
TN ko1t rek o DZ okt

The susceptibilities and dielectric response are defined as follows:

kDe 2,\2 /( w )

= SKZ'| — ),

k ) (o \/ikvthe
koe \ *

Xe(k) ( k ) s

kD|
wiewr=3() S007 ()
ek, w) = 14 xe(k) + xi (K, ®),

1
xe(K, w) = _E(

2_Te0 2_Ti0

Ve = —» Ui = —»
the Me thi m;
2 47re2neo 2 4JTZ€2I"Ieo

pé) = Me ’ p|0 = m;

2 2

K2 = Op0 2 @pio
De — 2 Di — 2 -
Uthe Uthi

Here, ithas been assumedthatthe electrons andionsin the simulationdomain are repre
by N andN; equally weighted macroparticles, respectiv@y) is the plasma dispersion
function and is defined as follows:

e?

1 (&)
Z@):ﬁ/mz—

Using Parseval's theorem and the Kramers—Kronig relations, the temporal mean-sc

dz Imé&=>0.
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density fluctuations are evaluated analytically from Egs. (B.1):

k) 2\ 1 Sk —kg)
Neo T Ne - 1+ xe(k — kg, 0)
1 Sk —kg)xé(k —kg, O[1 + xe(k — kg)]
Ni g E_(k kgv O)[l + Xe(k kg’ 0)]2 ’
M1 [*\ 1§~ Sk = ko)l + etk — ko)l (B.2)
Njo N; 9 6(k—kg,0)

<|E<k>|2> 1 xe(k — kg, 0) 1 Xe(k — Kg, O)[L + xe(k — kg)]

4rngoTeo/  Ne — 1+ xe(k — kg, 0) N —~ €(k — kg, O[1 + xe(k — kg, 0]’
2rp, 2rq .
kg = i & + Wey p, g = integer

Here,|ky| < 7/8x, |ky| < 7/8y, andzg represents the sum over all Brillouin zones. Ir
e1‘fect,zg accounts for aliasing effects krspace. It is noted here that in the limit where
lkxdx] < 1 and|k,dy| < 1, Egs. (B.2) yield the standard mean-square density fluctuatic
in a thermal plasma. Using Egs. (7) and (B.1), the temporal mean-square fluctuations ¢
density and potential envelopes are evaluated explicitly:

(

feas (k) 2> _ 1y Sk-kpk-ky

Neo Ni 4~ €k — kg, O[1 + xe(k —kg)I’
fear (K) 7\ 3 Sk —kg) 1 Ik —kg|?
Neo B 9 Ne 1 + Xe(k - kg’ 0) k2De
1 Sk — kg)[1 — S?(k — kg)]2x2(k — Kkgq)
N G_(k kg» O)[l + Xe(k - kgv O)]Z[l + Xe(k kg)] '
. (B.3)
eps(k) |° nels(k)
Teo Neo '

Sk —kg) { 1 Ik —Kkgl2] -,
= + k —k
> Eg: Ne 1+ Xe(k - kg, 0) kZDe XE( g)

i 2 (k — kg) [1 Sz(k kg)] X4(k kg)
N 9 ek — kg» O)[l + xe(k — kgv O)]Z[l + Xe(k - kg)] '
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